Thermomagnetic analysis of FeCoCrxNi alloys: Magnetic entropy of high-entropy alloys

被引:95
|
作者
Lucas, M. S. [1 ,2 ]
Belyea, D. [3 ]
Bauer, C. [3 ]
Bryant, N. [1 ,4 ]
Michel, E. [1 ,4 ]
Turgut, Z. [1 ,5 ]
Leontsev, S. O. [1 ,6 ]
Horwath, J. [1 ]
Semiatin, S. L. [1 ]
McHenry, M. E. [7 ]
Miller, C. W. [3 ]
机构
[1] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA
[2] UTC Inc, Dayton, OH 45432 USA
[3] Univ S Florida, Dept Phys, Tampa, FL 33620 USA
[4] Wright State Univ, Dayton, OH 45435 USA
[5] UES Inc, Wright Patterson AFB, OH 45433 USA
[6] Univ Dayton, Res Inst, Dayton, OH 45469 USA
[7] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.4798340
中图分类号
O59 [应用物理学];
学科分类号
摘要
The equimolar alloy FeCoCrNi, a high-entropy alloy, forms in the face-centered-cubic crystal structure and has a ferromagnetic Curie temperature of 130 K. In this study, we explore the effects of Cr concentration, cold-rolling, and subsequent heat treatments on the magnetic properties of FeCoCrxNi alloys. Cr reductions result in an increase of the Curie temperature, and may be used to tune the T-C over a very large temperature range. The magnetic entropy change for a change in applied field of 2T is Delta S-m = -0.35 J/(kg K) for cold-rolled FeCoCrNi. Cold-rolling results in a broadening of Delta S-m, where subsequent heat treatment at 1073 K sharpens the magnetic entropy curve. In all of the alloys, we find that upon heating (after cold-rolling) there is a re-entrant magnetic moment near 730 K. This feature is much less pronounced in the as-cast samples (without cold-rolling) and in the Cr-rich samples, and is no longer observed after annealing at 1073 K. Possible origins of this behavior are discussed. (C) 2013 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Metastability in high-entropy alloys: A review
    Shaolou Wei
    Feng He
    Cemal Cem Tasan
    Journal of Materials Research, 2018, 33 : 2924 - 2937
  • [42] Lattice distortions in high-entropy alloys
    Lewis Robert Owen
    Nicholas Gwilym Jones
    Journal of Materials Research, 2018, 33 : 2954 - 2969
  • [43] The Thermodynamics and Kinetics of High-Entropy Alloys
    M. C. Gao
    J.-C. Zhao
    J. E. Morral
    Journal of Phase Equilibria and Diffusion, 2017, 38 : 351 - 352
  • [44] Science and technology in high-entropy alloys
    Zhang, Weiran
    Liaw, Peter K.
    Zhang, Yong
    SCIENCE CHINA-MATERIALS, 2018, 61 (01) : 2 - 22
  • [45] Twinning in metastable high-entropy alloys
    Huang, Shuo
    Huang, He
    Li, Wei
    Kim, Dongyoo
    Lu, Song
    Li, Xiaoqing
    Holmstrom, Erik
    Kwon, Se Kyun
    Vitos, Levente
    NATURE COMMUNICATIONS, 2018, 9
  • [46] Thermodynamics and Kinetics of High-Entropy Alloys
    Gao, Michael C.
    Arroyave, Raymundo
    Morral, John E.
    Kattner, Ursula R.
    JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, 2021, 42 (05) : 549 - 550
  • [47] Wear Resistance of High-Entropy Alloys
    S. A. Firstov
    V. F. Gorban’
    N. A. Krapivka
    M. V. Karpets
    A. D. Kostenko
    Powder Metallurgy and Metal Ceramics, 2017, 56 : 158 - 164
  • [48] Microstructures and properties of high-entropy alloys
    Zhang, Yong
    Zuo, Ting Ting
    Tang, Zhi
    Gao, Michael C.
    Dahmen, Karin A.
    Liaw, Peter K.
    Lu, Zhao Ping
    PROGRESS IN MATERIALS SCIENCE, 2014, 61 : 1 - 93
  • [49] Twinning in metastable high-entropy alloys
    Shuo Huang
    He Huang
    Wei Li
    Dongyoo Kim
    Song Lu
    Xiaoqing Li
    Erik Holmström
    Se Kyun Kwon
    Levente Vitos
    Nature Communications, 9
  • [50] Physical Metallurgy of High-Entropy Alloys
    Yeh, Jien-Wei
    JOM, 2015, 67 (10) : 2254 - 2261