High Purity GaAs Nanowires Free of Planar Defects: Growth and Characterization

被引:91
|
作者
Joyce, Hannah J. [1 ]
Gao, Qiang [1 ]
Tan, H. Hoe [1 ]
Jagadish, Chennupati [1 ]
Kim, Yong [2 ]
Fickenscher, Melodie A. [3 ]
Perera, Saranga [3 ]
Hoang, Thang Ba [3 ]
Smith, Leigh M. [3 ]
Jackson, Howard E. [3 ]
Yarrison-Rice, Jan M. [4 ]
Zhang, Xin [5 ,6 ]
Zou, Jin [5 ,6 ]
机构
[1] Australian Natl Univ, Dept Elect Mat Engn, Res Sch Phys Sci & Engn, Canberra, ACT 0200, Australia
[2] Dong A Univ, Dept Phys, Pusan 604714, South Korea
[3] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA
[4] Miami Univ, Dept Phys, Oxford, OH 45056 USA
[5] Univ Queensland, Sch Engn, Brisbane, Qld 4072, Australia
[6] Univ Queensland, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia
基金
美国国家科学基金会;
关键词
D O I
10.1002/adfm.200800625
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigate how to tailor the structural, crystallographic and optical properties of GaAs nanowires. Nanowires were grown by Au nanoparticle-catalyzed metalorganic chemical vapor deposition. A high arsine flow rate, that is, a high ratio of group V to group I I I precursors, imparts significant advantages. It dramatically reduces planar crystallographic defects and reduces intrinsic carbon dopant incorporation. Increasing V/III ratio further, however, instigates nanowire kinking and increases nanowire tapering. By choosing an intermediate V/III ratio we achieve uniform, vertically aligned GaAs nanowires, free of planar crystallographic defects, with excellent optical properties and high purity. These findings will greatly assist the development of future GaAs nanowire-based electronic and optoelectronic devices, and are expected to be more broadly relevant to the rational synthesis of other III-V nanowires.
引用
收藏
页码:3794 / 3800
页数:7
相关论文
共 50 条
  • [21] Morphology characterization and growth mechanism of Au-catalyzed GaAs and GaAs/InGaAs nanowires
    Yuan Hui-Bo
    Li Lin
    Zeng Li-Na
    Zhang Jing
    Li Zai-Jin
    Qu Yi
    Yang Xiao-Tian
    Chi Yao-Dan
    Ma Xiao-Hui
    Liu Guo-Jun
    ACTA PHYSICA SINICA, 2018, 67 (18)
  • [22] CHARACTERIZATION OF DISLOCATION AND DEFECTS FOR LARGE HIGH PURITY GE CRYSTALS
    Mei, Hao
    Wang, Guojian
    Guan, Yutong
    Yang, Gang
    Gray, Bruce
    Mei, Dongming
    PROCEEDINGS OF THE SOUTH DAKOTA ACADEMY OF SCIENCE, VOL 94, 2015, 94 : 348 - 348
  • [23] In-catalyzed growth of high-purity indium oxide nanowires
    Calestani, Davide
    Zha, Mingzheng
    Zappettini, Andrea
    Lazzarini, Laura
    Zanotti, Lucio
    CHEMICAL PHYSICS LETTERS, 2007, 445 (4-6) : 251 - 254
  • [24] Gold-free growth of GaAs nanowires on silicon: arrays and polytypism
    Plissard, Sebastien
    Dick, Kimberly A.
    Larrieu, Guilhem
    Godey, Sylvie
    Addad, Ahmed
    Wallart, Xavier
    Caroff, Philippe
    NANOTECHNOLOGY, 2010, 21 (38)
  • [25] Free-standing GaAs nanowires growth on ITO glass by MOCVD
    Wu, D.
    Tang, X. H.
    Olivier, A.
    Li, X. Q.
    MATERIALS RESEARCH EXPRESS, 2015, 2 (04):
  • [26] Synthesis and Characterization of High-Purity Tellurium Nanowires via Self-seed-Assisted Growth Approach
    Li, Ying
    Zhao, Wen-Yu
    Mu, Xin
    Liu, Xing
    He, Dan-Qi
    Zhu, Wan-Ting
    Zhang, Qing-Jie
    JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (03) : 1661 - 1668
  • [27] Synthesis and Characterization of High-Purity Tellurium Nanowires via Self-seed-Assisted Growth Approach
    Ying Li
    Wen-yu Zhao
    Xin Mu
    Xing Liu
    Dan-qi He
    Wan-ting Zhu
    Qing-jie Zhang
    Journal of Electronic Materials, 2016, 45 : 1661 - 1668
  • [28] Characterization of electrical properties of GaAs nanowires and planar heterostructures by Kelvin probe force microscopy
    Matheson, Graham
    Geelhaar, Lutz
    Hellmann, Martin
    Herranz, Jesus
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [29] Growth Kinetics of Planar Nanowires
    V. G. Dubrovskii
    I. V. Shtrom
    Technical Physics Letters, 2020, 46 : 1008 - 1011
  • [30] Growth Kinetics of Planar Nanowires
    Dubrovskii, V. G.
    Shtrom, I. V.
    TECHNICAL PHYSICS LETTERS, 2020, 46 (10) : 1008 - 1011