Thermal mitigation of Pseudomonas aeruginosa biofilms

被引:51
|
作者
O'Toole, Ann [1 ]
Ricker, Erica B. [1 ]
Nuxoll, Eric [1 ]
机构
[1] Univ Iowa, Dept Chem & Biochem Engn, Seamans Ctr Engn Arts & Sci 4133, Iowa City, IA 52242 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Pseudomonas aeruginosa; biofilm; infection; heat shock; implanted medical device; LISTERIA-MONOCYTOGENES BIOFILM; BACTERIAL ADHESION; HEAT INACTIVATION; INFECTION-CONTROL; PREDICTIVE MODEL; RESISTANCE; PATHOGENESIS; EFFICACY; THERAPY;
D O I
10.1080/08927014.2015.1083985
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Bacterial biofilms infect 2-4% of medical devices upon implantation, resulting in multiple surgeries and increased recovery time due to the very great increase in antibiotic resistance in the biofilm phenotype. This work investigates the feasibility of thermal mitigation of biofilms at physiologically accessible temperatures. Pseudomonas aeruginosa biofilms were cultured to high bacterial density (1.7 x 10(9) CFU cm(-2)) and subjected to thermal shocks ranging from 50 degrees C to 80 degrees C for durations of 1-30 min. The decrease in viable bacteria was closely correlated with an Arrhenius temperature dependence and Weibull-style time dependence, demonstrating up to six orders of magnitude reduction in bacterial load. The bacterial load for films with more conventional initial bacterial densities dropped below quantifiable levels, indicating thermal mitigation as a viable approach to biofilm control.
引用
收藏
页码:665 / 675
页数:11
相关论文
共 50 条
  • [31] Viscoelastic properties of Pseudomonas aeruginosa variant biofilms
    Erin S. Gloag
    Guy K. German
    Paul Stoodley
    Daniel J. Wozniak
    Scientific Reports, 8
  • [32] PHENOTYPIC DIVERSIFICACION AND HYPERMUTABILITY IN Pseudomonas aeruginosa BIOFILMS
    Tobares, R. A.
    Smania, A. M.
    BIOCELL, 2014, 38 : 134 - 134
  • [33] Viscoelastic properties of Pseudomonas aeruginosa variant biofilms
    Gloag, Erin S.
    German, Guy K.
    Stoodley, Paul
    Wozniak, Daniel J.
    SCIENTIFIC REPORTS, 2018, 8
  • [34] Microarchitecture of Pseudomonas aeruginosa biofilms: A biological perspective
    Bedi, Brahmchetna
    Maurice, Nicholas M.
    Sadikot, Ruxana T.
    BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL, 2018, 2 (04): : 227 - 236
  • [35] The Effect of a Cationic Porphyrin on Pseudomonas aeruginosa Biofilms
    Collins, Tracy L.
    Markus, Elizabeth A.
    Hassett, Daniel J.
    Robinson, Jayne B.
    CURRENT MICROBIOLOGY, 2010, 61 (05) : 411 - 416
  • [36] MODULATION OF BIOFILMS OF PSEUDOMONAS-AERUGINOSA BY QUINOLONES
    YASSIEN, M
    KHARDORI, N
    AHMEDY, A
    TOAMA, M
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1995, 39 (10) : 2262 - 2268
  • [37] Dynamics of the Action of Biocides in Pseudomonas aeruginosa Biofilms
    Bridier, A.
    Dubois-Brissonnet, F.
    Greub, G.
    Thomas, V.
    Briandet, R.
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2011, 55 (06) : 2648 - 2654
  • [38] LACTOFERRIN, XYLITOL, AND THE INHIBITION OF PSEUDOMONAS AERUGINOSA BIOFILMS
    Ammons, Mary Cloud B.
    Ward, Loren S.
    James, Garth A.
    WOUND REPAIR AND REGENERATION, 2009, 17 (02) : A23 - A23
  • [39] Localized gene expression in Pseudomonas aeruginosa Biofilms
    Lenz, Ailyn P.
    Williamson, Kerry S.
    Pitts, Betsey
    Stewart, Philip S.
    Franklin, Michael J.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (14) : 4463 - 4471
  • [40] COMPLEMENT ACTIVATION BY PSEUDOMONAS-AERUGINOSA BIOFILMS
    JENSEN, ET
    KHARAZMI, A
    GARRED, P
    KRONBORG, G
    FOMSGAARD, A
    MOLLNES, TE
    HOIBY, N
    MICROBIAL PATHOGENESIS, 1993, 15 (05) : 377 - 388