Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources

被引:126
|
作者
Salcedo-Sanz, S. [1 ]
Ghamisi, P. [2 ]
Piles, M. [3 ]
Werner, M. [4 ]
Cuadra, L. [1 ]
Moreno-Martinez, A. [3 ]
Izquierdo-Verdiguier, E. [7 ]
Munoz-Mari, J. [3 ]
Mosavi, Amirhosein [5 ,6 ]
Camps-Valls, G. [3 ]
机构
[1] Univ Alcala, Alcala De Henares 28871, Spain
[2] Helmholtz Inst Freiberg Resource Technol, Helmholtz Zentrum Dresden Rossendorf, Freiberg, Germany
[3] Univ Valencia, Valencia 46980, Spain
[4] Tech Univ Munich, Munich, Germany
[5] Ton Duc Thang Univ, Environm Qual Atmospher Sci & Climate Change Res, Ho Chi Minh City, Vietnam
[6] Ton Duc Thang Univ, Fac Environm & Labour Safety, Ho Chi Minh City, Vietnam
[7] Univ Nat Resources & Life Sci BOKU, A-1190 Vienna, Austria
基金
欧洲研究理事会;
关键词
Earth science; Earth observation; Information fusion; Data fusion; Machine learning; Cloud computing; Gap filling; Remote sensing; Multisensor fusion; Data blending; Social networks; REMOTE-SENSING IMAGES; MULTISCALE GEM MODEL; SATELLITE DATA FUSION; SOIL-MOISTURE; DATA ASSIMILATION; CARBON-DIOXIDE; TIME-SERIES; ERA-INTERIM; PREDICTION; CLASSIFICATION;
D O I
10.1016/j.inffus.2020.07.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper reviews the most important information fusion data-driven algorithms based on Machine Learning (ML) techniques for problems in Earth observation. Nowadays we observe and model the Earth with a wealth of observations, from a plethora of different sensors, measuring states, fluxes, processes and variables, at unprecedented spatial and temporal resolutions. Earth observation is well equipped with remote sensing systems, mounted on satellites and airborne platforms, but it also involves in-situ observations, numerical models and social media data streams, among other data sources. Data-driven approaches, and ML techniques in particular, are the natural choice to extract significant information from this data deluge. This paper produces a thorough review of the latest work on information fusion for Earth observation, with a practical intention, not only focusing on describing the most relevant previous works in the field, but also the most important Earth observation applications where ML information fusion has obtained significant results. We also review some of the most currently used data sets, models and sources for Earth observation problems, describing their importance and how to obtain the data when needed. Finally, we illustrate the application of ML data fusion with a representative set of case studies, as well as we discuss and outlook the near future of the field.
引用
收藏
页码:256 / 272
页数:17
相关论文
共 50 条
  • [31] A conceptual approach to the fusion of Earth observation data
    Wald, L
    SURVEYS IN GEOPHYSICS, 2000, 21 (2-3) : 177 - 186
  • [32] Multisensor Earth observation systems: data fusion
    Atanassov, Valentin
    Borisova, Denitsa
    Petkov, Doyno
    Dimitrov, Ventzeslav
    Vasileva, Hristina
    Goranova, Margarita
    SENSORS, SYSTEMS, AND NEXT-GENERATION SATELLITES XXII, 2018, 10785
  • [33] Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics
    Mosavi, Amirhosein
    Faghan, Yaser
    Ghamisi, Pedram
    Puhong Duan
    Ardabili, Sina Faizollahzadeh
    Salwana, Ely
    Band, Shahab S.
    MATHEMATICS, 2020, 8 (10)
  • [34] A review of machine learning methods used for educational data
    Ersozlu, Zara
    Taheri, Sona
    Koch, Inge
    EDUCATION AND INFORMATION TECHNOLOGIES, 2024, 29 (16) : 22125 - 22145
  • [35] A Review of Methods Used in Machine Learning and Data Analysis
    Wu, Qingyang
    ICMLC 2019: 2019 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2019, : 37 - 45
  • [36] Comprehensive review of deep learning in orthopaedics: Applications, challenges, trustworthiness, and fusion
    Alzubaidi, Laith
    AL-Dulaimi, Khamael
    Salhi, Asma
    Alammar, Zaenab
    Fadhel, Mohammed A.
    Albahri, A. S.
    Alamoodi, A. H.
    Albahri, O. S.
    Hasan, Amjad F.
    Bai, Jinshuai
    Gilliland, Luke
    Peng, Jing
    Branni, Marco
    Shuker, Tristan
    Cutbush, Kenneth
    Santamaria, Jose
    Moreira, Catarina
    Ouyang, Chun
    Duan, Ye
    Manoufali, Mohamed
    Jomaa, Mohammad
    Gupta, Ashish
    Abbosh, Amin
    Gu, Yuantong
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 155
  • [37] Applications of Entropy in Data Analysis and Machine Learning: A Review
    Sepulveda-Fontaine, Salome A.
    Amigo, Jose M.
    ENTROPY, 2024, 26 (12)
  • [38] Machine Learning for Earth System Observation and Prediction
    Bonavita, Massimo
    Arcucci, Rossella
    Carrassi, Alberto
    Dueben, Peter
    Geer, Alan J.
    Le Saux, Bertrand
    Longepe, Nicolas
    Mathieu, Pierre-Philippe
    Raynaud, Laure
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2021, 102 (04) : E710 - E716
  • [39] EARTH OBSERVATION AND MACHINE LEARNING FOR CLIMATE CHANGE
    Haeinsch, Ronny
    Chaurasia, Mousmi Ajay
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 1676 - 1682
  • [40] A LITERATURE REVIEW ON DATA SOURCES AND METHODOLOGIES FOR ENRICHING GAS PATH ANALYSIS WITH EARTH OBSERVATION DATA
    Seume, Erik
    Goeing, Jan
    Friedrichs, Jens
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 1, 2024,