Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources

被引:126
|
作者
Salcedo-Sanz, S. [1 ]
Ghamisi, P. [2 ]
Piles, M. [3 ]
Werner, M. [4 ]
Cuadra, L. [1 ]
Moreno-Martinez, A. [3 ]
Izquierdo-Verdiguier, E. [7 ]
Munoz-Mari, J. [3 ]
Mosavi, Amirhosein [5 ,6 ]
Camps-Valls, G. [3 ]
机构
[1] Univ Alcala, Alcala De Henares 28871, Spain
[2] Helmholtz Inst Freiberg Resource Technol, Helmholtz Zentrum Dresden Rossendorf, Freiberg, Germany
[3] Univ Valencia, Valencia 46980, Spain
[4] Tech Univ Munich, Munich, Germany
[5] Ton Duc Thang Univ, Environm Qual Atmospher Sci & Climate Change Res, Ho Chi Minh City, Vietnam
[6] Ton Duc Thang Univ, Fac Environm & Labour Safety, Ho Chi Minh City, Vietnam
[7] Univ Nat Resources & Life Sci BOKU, A-1190 Vienna, Austria
基金
欧洲研究理事会;
关键词
Earth science; Earth observation; Information fusion; Data fusion; Machine learning; Cloud computing; Gap filling; Remote sensing; Multisensor fusion; Data blending; Social networks; REMOTE-SENSING IMAGES; MULTISCALE GEM MODEL; SATELLITE DATA FUSION; SOIL-MOISTURE; DATA ASSIMILATION; CARBON-DIOXIDE; TIME-SERIES; ERA-INTERIM; PREDICTION; CLASSIFICATION;
D O I
10.1016/j.inffus.2020.07.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper reviews the most important information fusion data-driven algorithms based on Machine Learning (ML) techniques for problems in Earth observation. Nowadays we observe and model the Earth with a wealth of observations, from a plethora of different sensors, measuring states, fluxes, processes and variables, at unprecedented spatial and temporal resolutions. Earth observation is well equipped with remote sensing systems, mounted on satellites and airborne platforms, but it also involves in-situ observations, numerical models and social media data streams, among other data sources. Data-driven approaches, and ML techniques in particular, are the natural choice to extract significant information from this data deluge. This paper produces a thorough review of the latest work on information fusion for Earth observation, with a practical intention, not only focusing on describing the most relevant previous works in the field, but also the most important Earth observation applications where ML information fusion has obtained significant results. We also review some of the most currently used data sets, models and sources for Earth observation problems, describing their importance and how to obtain the data when needed. Finally, we illustrate the application of ML data fusion with a representative set of case studies, as well as we discuss and outlook the near future of the field.
引用
收藏
页码:256 / 272
页数:17
相关论文
共 50 条
  • [1] Data Fusion in Earth Observation and the Role of Citizen as a Sensor: A Scoping Review of Applications, Methods and Future Trends
    Karagiannopoulou, Aikaterini
    Tsertou, Athanasia
    Tsimiklis, Georgios
    Amditis, Angelos
    REMOTE SENSING, 2022, 14 (05)
  • [2] A Comprehensive Review of DeepFake Detection Using Advanced Machine Learning and Fusion Methods
    Gupta, Gourav
    Raja, Kiran
    Gupta, Manish
    Jan, Tony
    Whiteside, Scott Thompson
    Prasad, Mukesh
    Liu, Enjie
    Yu, Hongqing
    ELECTRONICS, 2024, 13 (01)
  • [3] Monitoring sustainable development by means of earth observation data and machine learning: a review
    Ferreira, Bruno
    Iten, Muriel
    Silva, Rui G.
    ENVIRONMENTAL SCIENCES EUROPE, 2020, 32 (01)
  • [4] Monitoring sustainable development by means of earth observation data and machine learning: a review
    Bruno Ferreira
    Muriel Iten
    Rui G. Silva
    Environmental Sciences Europe, 2020, 32
  • [5] Fusion of statistical and machine learning approaches for time series prediction using earth observation data
    Agrawal K.P.
    Garg S.
    Sharma S.
    Patel P.
    Bhatnagar A.
    Agrawal, K.P. (kpa229@gmail.com), 1600, Inderscience Publishers, 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (14): : 255 - 266
  • [6] Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods
    Nosratabadi, Saeed
    Mosavi, Amirhosein
    Puhong Duan
    Ghamisi, Pedram
    Filip, Ferdinand
    Band, Shahab S.
    Reuter, Uwe
    Gama, Joao
    Gandomi, Amir H.
    MATHEMATICS, 2020, 8 (10) : 1 - 25
  • [7] Machine learning methods in data fusion systems
    Nowak, Robert
    Biedrzycki, Rafal
    Misiurewicz, Jacek
    2012 13TH INTERNATIONAL RADAR SYMPOSIUM (IRS), 2012, : 400 - 405
  • [8] Machine and deep learning for longitudinal biomedical data: a review of methods and applications
    Anna Cascarano
    Jordi Mur-Petit
    Jerónimo Hernández-González
    Marina Camacho
    Nina de Toro Eadie
    Polyxeni Gkontra
    Marc Chadeau-Hyam
    Jordi Vitrià
    Karim Lekadir
    Artificial Intelligence Review, 2023, 56 : 1711 - 1771
  • [9] Machine and deep learning for longitudinal biomedical data: a review of methods and applications
    Cascarano, Anna
    Mur-Petit, Jordi
    Hernandez-Gonzalez, Jeronimo
    Camacho, Marina
    Eadie, Nina de Toro
    Gkontra, Polyxeni
    Chadeau-Hyam, Marc
    Vitria, Jordi
    Lekadir, Karim
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL 2) : 1711 - 1771
  • [10] A Review on Machine Learning for Earth Observation Satellite Mission Planning
    Li Z.
    Jiang M.
    Ran D.
    Zheng F.
    Recent Advances in Computer Science and Communications, 2022, 15 (09): : 1106 - 1114