Global dynamics of stochastic tidal equations

被引:1
|
作者
Cardone, G. [1 ]
Fouetio, A. [2 ]
Lando, S. Talla [3 ]
Woukeng, J. L. [3 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
[2] Univ Bertoua, Higher Teacher Training Coll Bertoua, Dept Math, POB 652, Bertoua, Cameroon
[3] Univ Dschang, Dept Math & Comp Sci, POB 67, Dschang, Cameroon
关键词
Stochastic tidal dynamics equations; Wiener process; Algebras with mean value; Sigma-convergence; HOMOGENIZATION; ALGEBRAS;
D O I
10.1016/j.na.2022.113137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The current work deals with the global dynamics of 2D stochastic tidal equations in a highly heterogeneous environment. With the help of the stochastic version of the sigma-convergence method in conjunction with the Prokhorov and Skorokhod compactness theorems, we prove that the dynamics at the macroscopic level is of the same type at the microscopic level, but this time with non oscillating parameters. We also prove a corrector-type result. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Linearly Constrained Global Optimization and Stochastic Differential Equations
    Panos Parpas
    Berç Rustem
    Efstratios N. Pistikopoulos
    Journal of Global Optimization, 2006, 36 : 191 - 217
  • [32] Global existence of solutions for stochastic impulsive differential equations
    Li Juan Shen
    Ji Tao Sun
    Acta Mathematica Sinica, English Series, 2011, 27 : 773 - 780
  • [33] Global Random Attractors for the Stochastic Dissipative Zakharov Equations
    Yan-feng GUO
    Bo-ling GUO
    Dong-long LI
    Acta Mathematicae Applicatae Sinica, 2014, (02) : 289 - 304
  • [34] Linearly constrained global optimization and stochastic differential equations
    Parpas, Panos
    Rustem, Berc
    Pistikopoulos, Efstratios N.
    JOURNAL OF GLOBAL OPTIMIZATION, 2006, 36 (02) : 191 - 217
  • [35] The Global Solutions and Moment Boundedness of Stochastic Multipantograph Equations
    Tian, Maosheng
    Meng, Xuejing
    Chen, Jihong
    Tang, Xiaoqi
    JOURNAL OF CONTROL SCIENCE AND ENGINEERING, 2016, 2016 (2016)
  • [36] Global random attractors for the stochastic dissipative Zakharov equations
    Yan-feng Guo
    Bo-ling Guo
    Dong-long Li
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 289 - 304
  • [37] Global Existence for Stochastic Strongly Dissipative Zakharov Equations
    Wang, Xueqin
    Shang, Yadong
    Lei, Chunlin
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [38] Explicit solutions to stochastic global angular momentum equations
    Egger, J
    METEOROLOGISCHE ZEITSCHRIFT, 2005, 14 (05) : 671 - 676
  • [39] Global Random Attractors for the Stochastic Dissipative Zakharov Equations
    Gu, Yan-feng
    Guo, Bo-ling
    Li, Dong-long
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (02): : 289 - 304
  • [40] Simulation of the dynamics of the Hansbreen tidal glacier (Svalbard) based on the stochastic model
    Kislov, A., V
    Glazovsky, A. F.
    LED I SNEG-ICE AND SNOW, 2019, 59 (04): : 452 - 459