Global dynamics of stochastic tidal equations

被引:1
|
作者
Cardone, G. [1 ]
Fouetio, A. [2 ]
Lando, S. Talla [3 ]
Woukeng, J. L. [3 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
[2] Univ Bertoua, Higher Teacher Training Coll Bertoua, Dept Math, POB 652, Bertoua, Cameroon
[3] Univ Dschang, Dept Math & Comp Sci, POB 67, Dschang, Cameroon
关键词
Stochastic tidal dynamics equations; Wiener process; Algebras with mean value; Sigma-convergence; HOMOGENIZATION; ALGEBRAS;
D O I
10.1016/j.na.2022.113137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The current work deals with the global dynamics of 2D stochastic tidal equations in a highly heterogeneous environment. With the help of the stochastic version of the sigma-convergence method in conjunction with the Prokhorov and Skorokhod compactness theorems, we prove that the dynamics at the macroscopic level is of the same type at the microscopic level, but this time with non oscillating parameters. We also prove a corrector-type result. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Moderate deviations for stochastic tidal dynamics equations with multiplicative Gaussian noise
    Haseena, A.
    Suvinthra, M.
    Mohan, Manil T.
    Balachandran, K.
    APPLICABLE ANALYSIS, 2022, 101 (04) : 1456 - 1490
  • [2] Exponential inequalities for exit times for two dimensional stochastic tidal dynamics equations
    Mohan, Manil T.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2022, 40 (02) : 268 - 303
  • [3] Global Dynamics for the Two-dimensional Stochastic Nonlinear Wave Equations
    Gubinelli, Massimiliano
    Koch, Herbert
    Oh, Tadahiro
    Tolomeo, Leonardo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (21) : 16954 - 16999
  • [4] Global dynamics for the stochastic nonlinear beam equations on the four-dimensional torus
    Chapouto, Andreia
    Li, Guopeng
    Liu, Ruoyuan
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [5] Dynamics of stochastic Zakharov equations
    Guo, Boling
    Lv, Yan
    Yang, Xiaoping
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (05)
  • [6] Stochastic Control of Tidal Dynamics Equation with Levy Noise
    Agarwal, Pooja
    Manna, Utpal
    Mukherjee, Debopriya
    APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 79 (02): : 327 - 396
  • [7] Stochastic dynamics and the classical equations of motion
    Beghian, LE
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1997, 112 (05): : 727 - 731
  • [8] Global dynamics of the Brusselator equations
    You, Yuncheng
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2007, 4 (02) : 167 - 196
  • [9] DYNAMICS OF STOCHASTIC FRACTIONAL BOUSSINESQ EQUATIONS
    Huang, Jianhua
    Shen, Tianlong
    Li, Yuhong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (07): : 2051 - 2067
  • [10] Limiting dynamics for stochastic wave equations
    Lv, Yan
    Wang, Wei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (01) : 1 - 23