Effects of Gd3+ doping on the microstructure and electrochemical properties of Li1.20[Mn0.54Ni0.13Co0.13]O2 as cathode for lithium-ion batteries

被引:6
|
作者
Shen, Zigang [1 ]
Li, Dong [2 ]
Tang, Yanan [1 ]
Li, Chenggang [1 ]
机构
[1] Zhengzhou Normal Univ, Quantum Mat Res Ctr, Coll Phys & Elect Engn, Zhengzhou 450044, Henan, Peoples R China
[2] Zhengzhou Railway Vocat & Tech Coll, Zhengzhou 450052, Henan, Peoples R China
关键词
HIGH-RATE PERFORMANCE; HIGH-CAPACITY; LI;
D O I
10.1007/s10854-018-9009-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To enhance the electrochemical properties of the Mn-based lithium-rich layered cathode materials, Li-1.20[Mn0.54-x Gd (x) Ni0.13Co0.13]O-2 (x = 0, 0.01, 0.02 and 0.03) were synthesized by using the carbonate co-precipitation method. The X-ray diffraction, scanning electron microscope, galvanostatic charge-discharge tests and electrochemical impedance spectroscopy techniques have been carried out to investigate the influences of the Gd3+ doping modification. And the results showed the lower cation mixing degree and superior electrochemical properties were obtained for the LMNCO by the Gd3+ doping. With the Gd3+ doping amount increasing, the capacity retentions after 100 cycles enhanced from 88.5 to 90.9% and then decrease to 86.7% with x = 0.01, 0.02 and 0.03, respectively. While the un-doped LMNCO only delivered the capacity retention of 85.1%. Besides, the discharge capacity of Li-1.20[Mn0.52Gd0.02Ni0.13Co0.13]O-2 was 29.4 mAh g(-1) larger than that of un-doped sample at 5 C high rate. The electrochemical impedance spectroscopy results indicated that the Gd3+ doping modification could restrain the growth speed of charge transfer impedance of LMNCO during the charge and discharge process.
引用
收藏
页码:9717 / 9727
页数:11
相关论文
共 50 条
  • [31] Effects of doping Al on the structure and electrochemical performances of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials
    Min Luo
    Ran Zhang
    Yongqiang Gong
    Meng Wang
    Yunbo Chen
    Mo Chu
    Lin Chen
    Ionics, 2018, 24 : 967 - 976
  • [32] The effects of persulfate treatment on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material
    Zheng, Jun
    Deng, Shengnan
    Shi, Zhicong
    Xu, Hongjie
    Xu, Hui
    Deng, Yuanfu
    Zhang, Zachary
    Chen, Guohua
    JOURNAL OF POWER SOURCES, 2013, 221 : 108 - 113
  • [33] Synthesis of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathode Material in Acetate System for Lithium-Ion Battery
    Shao, Zhongcai
    Yv, Lina
    Hu, Jinbo
    Zhao, Yongxin
    Dai, Shihang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (03): : 2996 - 3005
  • [34] Synthesis of Li1.2Mn0.54Co0.13Ni0.13O2 by sol–gel method and its electrochemical properties as cathode materials for lithium-ion batteries
    Xiaoling Ma
    Huibing He
    Ya Sun
    Youxiang Zhang
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 16665 - 16671
  • [35] LiNbO3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a cathode material with enhanced electrochemical performances for lithium-ion batteries
    Jie Wang
    Kewei Wu
    Changsheng Xu
    Xuebu Hu
    Lei Qiu
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 28223 - 28233
  • [36] LiNbO3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a cathode material with enhanced electrochemical performances for lithium-ion batteries
    Wang, Jie
    Wu, Kewei
    Xu, Changsheng
    Hu, Xuebu
    Qiu, Lei
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (24) : 28223 - 28233
  • [37] Influence of Fe substitution on cycling stability of Li[Li0.2Ni0.13Mn0.54Co0.13]O2 cathode for lithium ion batteries
    Min Chen
    Dongrui Chen
    Youhao Liao
    Qiming Huang
    Weishan Li
    Ionics, 2015, 21 : 1827 - 1833
  • [38] Influence of Fe substitution on cycling stability of Li[Li0.2Ni0.13Mn0.54Co0.13]O2 cathode for lithium ion batteries
    Chen, Min
    Chen, Dongrui
    Liao, Youhao
    Huang, Qiming
    Li, Weishan
    IONICS, 2015, 21 (07) : 1827 - 1833
  • [39] Synthesis and Improvement on the Electrochemical Properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by Fluorine Doping
    Zhang Hai-Lang
    Du Yun
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (12): : 10713 - 10717
  • [40] Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium-ion batteries with enhanced electrochemical performance
    Lin Zhou
    Jing Liu
    Lisi Huang
    Na Jiang
    Qiaoji Zheng
    Dunmin Lin
    Journal of Solid State Electrochemistry, 2017, 21 : 3467 - 3477