Lack of PAH emission toward low-mass embedded young stellar objects

被引:39
|
作者
Geers, V. C. [1 ,2 ]
van Dishoeck, E. F. [1 ]
Pontoppidan, K. M. [3 ]
Lahuis, F. [4 ]
Crapsi, A. [1 ,5 ]
Dullemond, C. P. [6 ]
Blake, G. A. [3 ]
机构
[1] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands
[2] Univ Toronto, Toronto, ON M5R 2W9, Canada
[3] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[4] Univ Groningen, SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands
[5] Observ Astron Nacl IGN, Madrid 28014, Spain
[6] Max Planck Inst Astron, D-69117 Heidelberg, Germany
关键词
stars: pre-main sequence; stars: planetary systems: protoplanetary disks; stars: circumstellar matter; astrochemistry; HERBIG AE/BE STARS; T-TAURI STARS; POLYCYCLIC AROMATIC-HYDROCARBONS; 2-DIMENSIONAL RADIATIVE-TRANSFER; TRANSIENTLY HEATED PARTICLES; SPITZER SPECTROSCOPIC SURVEY; MU-M; CIRCUMSTELLAR DISKS; INFRARED-EMISSION; TRANSITIONAL DISK;
D O I
10.1051/0004-6361:200811001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. Polycyclic aromatic hydrocarbons (PAHs) have been detected toward molecular clouds and some young stars with disks, but have not yet been associated with embedded young stars. We present a sensitive mid-infrared spectroscopic survey of PAH features toward a sample of low-mass embedded young stellar objects (YSOs). The aim is to put constraints on the PAH abundance in the embedded phase of star formation using radiative transfer modeling. Methods. VLT-ISAAC L-band spectra for 39 sources and Spitzer IRS spectra for 53 sources are presented. Line intensities are compared to recent surveys of Herbig Ae/Be and T Tauri stars. The radiative transfer codes RADMC and RADICAL are used to model the PAH emission from embedded YSOs consisting of a pre-main-sequence star with a circumstellar disk embedded in an envelope. The dependence of the PAH feature on PAH abundance, stellar radiation field, inclination and the extinction by the surrounding envelope is studied. Results. The 3.3 mu m PAH feature is undetected for the majority of the sample (97%), with typical upper limits of 5 x 10(-16) W m(-2). One source originally classified as class I, IRS 48, shows a strong 3.3 mu m feature from a disk. Compact 11.2 mu m PAH emission is seen directly towards 1 out of the 53 Spitzer Short-High spectra, for a source that is borderline embedded. For all 12 sources with both VLT and Spitzer spectra, no PAH features are detected in either. In total, PAH features are detected toward at most 1 out of 63 (candidate) embedded protostars (less than or similar to 2%), even lower than observed for class II T Tauri stars with disks (11-14%). Models predict the 7.7 mu m feature as the best tracer of PAH emission, while the 3.3 mu m feature is relatively weak. Assuming typical class I stellar and envelope parameters, the absence of PAH emission is most likely explained by the absence of emitting carriers through a PAH abundance at least an order of magnitude lower than in molecular clouds but similar to that found in disks. Thus, most PAHs likely enter the protoplanetary disks frozen out in icy layers on dust grains and/or in coagulated form.
引用
收藏
页码:837 / 846
页数:10
相关论文
共 50 条
  • [1] Disks and outflows in CO rovibrational emission from embedded, low-mass young stellar objects
    Herczeg, G. J.
    Brown, J. M.
    van Dishoeck, E. F.
    Pontoppidan, K. M.
    ASTRONOMY & ASTROPHYSICS, 2011, 533
  • [2] Evolution of outflow activity around low-mass embedded young stellar objects
    Bontemps, S
    Andre, P
    Terebey, S
    Cabrit, S
    ASTRONOMY & ASTROPHYSICS, 1996, 311 (03): : 858 - 872
  • [3] Carbon chains in low-mass young stellar objects
    Wilkins, Olivia
    Graninger, Dawn
    Oberg, Karin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [4] CCS and NH3 emission associated with low-mass young stellar objects
    de Gregorio-Monsalvo, I
    Gómez, JF
    Suárez, O
    Kuiper, TBH
    Rodríguez, LF
    Jiménez-Bailón, E
    ASTROPHYSICAL JOURNAL, 2006, 642 (01): : 319 - 329
  • [5] SUBMILLIMETER CO SPECTROSCOPY OF LOW-MASS YOUNG STELLAR OBJECTS
    SCHUSTER, KF
    RUSSELL, APG
    HARRIS, AI
    ASTROPHYSICS AND SPACE SCIENCE, 1995, 224 (1-2) : 117 - 120
  • [6] Accretion properties of low mass embedded young stellar objects
    Nisini, B
    Antoniucci, S
    Giannini, T
    Lorenzetti, D
    Low-Mass Stars and Brown Dwarfs - IMF Accretion and Activity, 2005, 76 (02): : 235 - 240
  • [7] LUMINOSITY EXCESSES IN LOW-MASS YOUNG STELLAR OBJECTS - A STATISTICAL STUDY
    STROM, KM
    STROM, SE
    KENYON, SJ
    HARTMANN, L
    ASTRONOMICAL JOURNAL, 1988, 95 (02): : 534 - 542
  • [8] VERY LONG BASELINE ARRAY ASTROMETRY OF LOW-MASS YOUNG STELLAR OBJECTS
    Loinard, Laurent
    Torres, Rosa M.
    Mioduszewski, Amy J.
    Rodriguez, Luis F.
    IV REUNION SOBRE ASTRONOMIA DINAMICA EN LATINOAMERICA (ADELA 2008), 2008, 34 : 14 - +
  • [9] Tracing the envelopes around embedded low-mass young stellar objects with HCO+ and millimeter-continuum observations
    Hogerheijde, MR
    vanDishoeck, EF
    Blake, GA
    vanLangevelde, HJ
    ASTROPHYSICAL JOURNAL, 1997, 489 (01): : 293 - 313
  • [10] Water maser survey toward low-mass young stellar objects in the northern sky: Observational constraints on maser excitation conditions
    Furuya, RS
    Kitamura, Y
    Wootten, HA
    Claussen, MJ
    Kawabe, R
    ASTROPHYSICAL JOURNAL, 2001, 559 (02): : L143 - L147