Robust estimation for semi-functional linear regression models

被引:10
|
作者
Boente, Graciela [1 ,2 ]
Salibian-Barrera, Matias [3 ]
Vena, Pablo [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, CONICET, Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, CONICET, Buenos Aires, DF, Argentina
[3] Univ British Columbia, Dept Stat, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
B-splines; Functional data analysis; Partial linear models; Robust estimation; SPLINE ESTIMATORS;
D O I
10.1016/j.csda.2020.107041
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Semi-functional linear regression models postulate a linear relationship between a scalar response and a functional covariate, and also include a non-parametric component involving a univariate explanatory variable. It is of practical importance to obtain estimators for these models that are robust against high-leverage outliers, which are generally difficult to identify and may cause serious damage to least squares and Huber-type M-estimators. For that reason, robust estimators for semi-functional linear regression models are constructed combining B-splines to approximate both the functional regression parameter and the nonparametric component with robust regression estimators based on a bounded loss function and a preliminary residual scale estimator. Consistency and rates of convergence for the proposed estimators are derived under mild regularity conditions. The reported numerical experiments show the advantage of the proposed methodology over the classical least squares and Huber-type M-estimators for finite samples. The analysis of real examples illustrates that the robust estimators provide better predictions for non-outlying points than the classical ones, and that when potential outliers are removed from the training and test sets both methods behave very similarly. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Optimal model averaging estimator for semi-functional partially linear models
    Rongjie Jiang
    Liming Wang
    Yang Bai
    Metrika, 2021, 84 : 167 - 194
  • [32] Semi-functional partially linear regression model with responses missing at random
    Ling, Nengxiang
    Kan, Rui
    Vieu, Philippe
    Meng, Shuyu
    METRIKA, 2019, 82 (01) : 39 - 70
  • [33] Semi-Functional Partial Linear Quantile Regression Model with Randomly Censored Responses
    Ling, Nengxiang
    Yang, Jintao
    Yu, Tonghui
    Ding, Hui
    Jia, Zhaoli
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2024,
  • [34] Optimal model averaging estimator for semi-functional partially linear models
    Jiang, Rongjie
    Wang, Liming
    Bai, Yang
    METRIKA, 2021, 84 (02) : 167 - 194
  • [35] Spline estimators for semi-functional linear model
    Zhou, Jianjun
    Chen, Min
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (03) : 505 - 513
  • [36] Robust Functional Linear Regression Models
    Beyaztas, Ufuk
    Shang, Han Lin
    R JOURNAL, 2023, 15 (01): : 212 - 233
  • [37] Asymptotic results of semi-functional partial linear regression estimate under functional spatial dependency
    Benallou, M.
    Attouch, M. K.
    Benchikh, T.
    Fetitah, O.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (20) : 7172 - 7192
  • [38] Spatiotemporal Analysis of Ozone Concentration Using Semi-Functional Partial Linear Models
    Alshahrani, Fatimah
    Fetitah, Omar
    Almanjahie, Ibrahim M.
    Attouch, Mohammed Kadi
    CHIANG MAI JOURNAL OF SCIENCE, 2023, 50 (06):
  • [39] Robust estimation in partially linear regression models
    Jiang, Yunlu
    JOURNAL OF APPLIED STATISTICS, 2015, 42 (11) : 2497 - 2508
  • [40] Robust estimation for functional quadratic regression models
    Boente G.
    Parada D.
    Computational Statistics and Data Analysis, 2023, 187