Using high-quality, atomic point charges for metal-organic frameworks to enable high-throughput screening of materials for contaminant removal from methane

被引:0
|
作者
Nazarian, Dalar [2 ]
Ganesh, Panchapakesan [3 ]
Camp, Jeffrey [2 ]
Sholl, David [1 ]
机构
[1] Georgia Inst Tech, Atlanta, GA USA
[2] Georgia Inst Technol, Biomol & Chem Engn, Atlanta, GA 30332 USA
[3] Oak Ridge Natl Lab, CNMS, MS 6494, Oak Ridge, TN USA
来源
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY | 2016年 / 251卷
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
379
引用
收藏
页数:1
相关论文
共 50 条
  • [21] The development of high-throughput techniques for the synthesis and screening of novel lanthanide metal-organic frameworks
    Kennedy, Danielle F.
    Hill, Matthew R.
    Muir, Ben W.
    Drummond, Calum J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [22] High-throughput continuous flow catalysis of organic reactions using metal-organic frameworks
    Thai, Jonathan
    Tapia, Jesus
    Reynolds, Melissa
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [23] Split-Charge Equilibration Parameters for Generating Rapid Partial Atomic Charges in Metal-Organic Frameworks and Porous Polymer Networks for High-Throughput Screening
    Collins, Sean P.
    Woo, Tom K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (01): : 903 - 910
  • [24] Machine-learning-assisted high-throughput computational screening of high performance metal-organic frameworks
    Shi, Zenan
    Yang, Wenyuan
    Deng, Xiaomei
    Cai, Chengzhi
    Yan, Yaling
    Liang, Hong
    Liu, Zili
    Qiao, Zhiwei
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2020, 5 (04) : 725 - 742
  • [25] High-Throughput Screening of Metal-Organic Frameworks for CO2 Capture in the Presence of Water
    Li, Song
    Chung, Yongchul G.
    Snurr, Randall Q.
    LANGMUIR, 2016, 32 (40) : 10368 - 10376
  • [26] Molecular modelling and machine learning for high-throughput screening of metal-organic frameworks for hydrogen storage
    Bobbitt, N. Scott
    Snurr, Randall Q.
    MOLECULAR SIMULATION, 2019, 45 (14-15) : 1069 - 1081
  • [27] High-throughput computational screening of metal-organic frameworks with topological diversity for hexane isomer separations
    Peng, Liang
    Zhu, Qiao
    Wu, Pinglian
    Wu, Xuanjun
    Cai, Weiquan
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (16) : 8508 - 8516
  • [28] High-Throughput Screening of Metal-Organic Frameworks Assisted by Machine Learning: Propane/Propylene Separation
    Xue, Xiaoyu
    Cheng, Min
    Wang, Shihui
    Chen, Shaochen
    Zhou, Li
    Liu, Chong
    Ji, Xu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (02) : 1073 - 1084
  • [29] High-Throughput Screening of Anion-Pillared Metal-Organic Frameworks for the Separation of Light Hydrocarbons
    Gu, Chenkai
    Liu, Jing
    Sholl, David S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (36): : 20076 - 20086
  • [30] Evaluation of Force Field Performance for High-Throughput Screening of Gas Uptake in Metal-Organic Frameworks
    McDaniel, Jesse G.
    Li, Song
    Tylianakis, Emmanouil
    Snurr, Randall Q.
    Schmidt, J. R.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (06): : 3143 - 3152