A Deep Learning Model for Green Algae Detection on SAR Images

被引:15
|
作者
Guo, Yuan [1 ,2 ,3 ]
Gao, Le [1 ,2 ]
Li, Xiaofeng [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China
[2] Chinese Acad Sci, Ctr Ocean Megasci, Qingdao 266071, Peoples R China
[3] Univ Chinese Acad Sci, Coll Marine Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Green products; Algae; Radar polarimetry; Tides; Ocean temperature; Feature extraction; Sea surface; Deep learning (DL); green algae; Sentinel-1 synthetic aperture radar (SAR) image; Yellow Sea; ULVA-PROLIFERA BLOOMS; SEA-SURFACE TEMPERATURE; YELLOW SEA; INTERANNUAL VARIABILITY; TEXTURAL FEATURES; TIDE; CLASSIFICATION; NUTRIENTS; GROWTH; GERMINATION;
D O I
10.1109/TGRS.2022.3215895
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This study developed a textural-enhanced deep learning (DL) model based on the classic U-net framework for green algae detection in Sentinel-1 synthetic aperture radar (SAR) imagery. Four special modifications are made in the framework: texture-fused input dataset, texture concatenation to effectively use the texture information, weighted loss function to settle the imbalance of algae-seawater samples, and an attention module to facilitate model focus on the discriminative features efficiently. To build the proposed model, we collected 119 Sentinel-1 SAR images acquired in the Yellow Sea and manually labeled 8441 samples, among which 4421/1896/2124 were used as the training/validation/testing dataset, respectively. Experiments show that the classification achieves the mean intersection over union (mIOU) of 86.31%, outperforming previous DL methods. Furthermore, each modification is effective, and the weighted loss function plays the most critical role. Moreover, we monitored green tide in the Yellow Sea from 2019 to 2021 using the proposed model and analyzed the relationship between green tide interannual variation and two primary environmental factors: nitrate concentration and sea surface temperature (SST). The interannual variation is characterized via three crucial indexes: bloom duration, coverage area, and nearshore damage. The detection results reveal that the bloom duration is the longest (shortest) in 2019 (2020), corresponding to the biggest (smallest) coverage area in 2019 (2020). In addition, the nearshore damage is the heaviest (lightest) in 2021 (2020). We also found that the interannual variation of green tide scales is partly related to the available nitrate concentration and SST variation in algae-distributed regions.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] AlgaeNet: A Deep-Learning Framework to Detect Floating Green Algae From Optical and SAR Imagery
    Gao, Le
    Li, Xiaofeng
    Kong, Fanzhou
    Yu, Rencheng
    Guo, Yuan
    Ren, Yibin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 2782 - 2796
  • [22] LssDet: A Lightweight Deep Learning Detector for SAR Ship Detection in High-Resolution SAR Images
    Yan, Guoxu
    Chen, Zhihua
    Wang, Yi
    Cai, Yangwei
    Shuai, Shikang
    REMOTE SENSING, 2022, 14 (20)
  • [23] TransUNet plus plus SAR: Change Detection with Deep Learning about Architectural Ensemble in SAR Images
    Du, Yu
    Zhong, Ruofei
    Li, Qingyang
    Zhang, Furao
    REMOTE SENSING, 2023, 15 (01)
  • [24] Offshore Oil Slicks Detection From SAR Images Through The Mask-RCNN Deep Learning Model
    Emna, Amri
    Alexandre, Benoit
    Bolon, Philippe
    Veronique, Migebielle
    Bruno, Conche
    Georges, Oppenheim
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [25] Generation of SAR Images Using Deep Learning
    Bhamidipati S.R.M.
    Srivatsa C.
    Kanakapura Shivabasave Gowda C.
    Vadada S.
    SN Computer Science, 2020, 1 (6)
  • [26] Fishing Vessel Classification in SAR Images Using a Novel Deep Learning Model
    Guan, Yanan
    Zhang, Xi
    Chen, Siwei
    Liu, Genwang
    Jia, Yongjun
    Zhang, Yi
    Gao, Gui
    Zhang, Jie
    Li, Zhongwei
    Cao, Chenghui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [27] A Deep-Learning-Based Lightweight Model for Ship Localizations in SAR Images
    Bhattacharjee, Shovakar
    Shanmugam, Palanisamy
    Das, Sukhendu
    IEEE ACCESS, 2023, 11 : 94415 - 94427
  • [28] A DEEP LEARNING APPROACH TO SHIP DETECTION AND CHARACTERIZATION FROM MULTIRESOLUTION SATELLITE SAR IMAGES
    Povoli, Sergio
    Di Donna, Mauro
    Macina, Flavia
    Avolio, Corrado
    Zavagli, Massimo
    Costantini, Mario
    Bruzzone, Lorenzo
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 643 - 646
  • [29] Improved Difference Images for Change Detection Classifiers in SAR Imagery Using Deep Learning
    Alatalo J.
    Sipola T.
    Rantonen M.
    IEEE Transactions on Geoscience and Remote Sensing, 2023, 61
  • [30] Concatenated Deep-Learning Framework for Multitask Change Detection of Optical and SAR Images
    Du, Zhengshun
    Li, Xinghua
    Miao, Jianhao
    Huang, Yanyuan
    Shen, Huanfeng
    Zhang, Liangpei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 719 - 731