LOCAL AND AREA-AVERAGED FLOW STRUCTURE OF AIR-WATER TWO-PHASE FLOW IN A VERTICAL ANNULUS

被引:0
|
作者
Ozar, Basar [1 ]
Jeong, Jae Jun
Dixit, Abhinav [1 ]
Julia, Jose Enrique
Hibiki, Takashi [1 ]
Ishii, Mamoru [1 ]
机构
[1] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The flow structure of gas-liquid two-phase flow has been investigated in a vertical annulus channel. The annulus consisted of a geometry where the inner diameter was 19.1 mm and the outer diameter was 38.1 mm. The total height of the test section was 4.37 m. Experiments were conducted for nineteen inlet flow conditions. These flow conditions covered bubbly, cap-slug, and churn-turbulent flows. The local flow parameters, such as void fraction, interfacial area concentration, and bubble interface velocity, were measured at nine radial positions within the gap of the annulus at z/D(h)= 230 of the test section. Radial distributions of these parameters were interpreted in terms of turbulent velocity profile, lift and wall forces. In addition, the local measurements were used to calculate distribution parameter, C(0) in drift-flux model, and area averaged interfacial area concentration. Ishii's (1977) model was modified and a new correlation of C(0) was proposed based on the experimentally obtained C(0) values. The area-averaged interfacial area concentration (IAC) values were compared with the most widely used models (Ishii and Mishima, 1980; Spore et al., 1983; Hibiki and Ishii, 2002). The advantages and drawbacks of these models were highlighted.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 50 条
  • [11] Structure of air-water two-phase flow in helically coiled tubes
    Murai, Y
    Yoshikawa, S
    Toda, S
    Ishikawa, M
    Yamamoto, F
    NUCLEAR ENGINEERING AND DESIGN, 2006, 236 (01) : 94 - 106
  • [12] Air-water two-phase flow in pipe bends
    Hapanowicz, J
    Troniewski, L
    Witczak, S
    INZYNIERIA CHEMICZNA I PROCESOWA, 2001, 22 (02): : 219 - 237
  • [13] Modeling of air-water two-phase annular flow
    Ratkovich, Nicolas, 2016, Universidad Central de Venezuela (54):
  • [14] Characterization of horizontal air-water two-phase flow
    Kong, Ran
    Kim, Seungjin
    NUCLEAR ENGINEERING AND DESIGN, 2017, 312 : 266 - 276
  • [15] Visualization Study of Air-Water Two-Phase Flow Pattern in Upward Vertical Flow of Square Channel
    Santoso, B.
    Tjahjana, D. D. D. P.
    Prakosa, G.
    INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING RESEARCH AND APPLICATION, 2019, 494
  • [16] Optimization of entrainment and interfacial flow patterns in countercurrent air-water two-phase flow in vertical pipes
    Wang, Yongzhi
    Luo, Feng
    Zhu, Zichen
    Li, Ruijie
    Sina, Mohammad
    FRONTIERS IN MATERIALS, 2024, 11
  • [17] Experimental Investigation on Effects of Flow Orientation on Interfacial Structure of Air-Water Two-Phase Flow
    Qiao, Shouxu
    Li, Jinyang
    Ren, Jiaxing
    Kim, Seungjin
    COATINGS, 2023, 13 (01)
  • [18] Experimental investigation of air-water, two-phase flow regimes in vertical mini pipe
    Hanafizadeh, P.
    Saidi, M. H.
    Gheimasi, A. Nouri
    Ghanbarzadeh, S.
    SCIENTIA IRANICA, 2011, 18 (04) : 923 - 929
  • [19] Characterization of air-water two-phase vertical flow by using electrical resistance imaging
    Wu, YX
    Li, H
    Wang, M
    Williams, RA
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2005, 83 (01): : 37 - 41
  • [20] Some characteristics of air-water two-phase flow in small diameter vertical tubes
    Mishima, K
    Hibiki, T
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1996, 22 (04) : 703 - 712