Molecular Modeling and Ligand Docking for Solute Carrier (SLC) Transporters

被引:57
|
作者
Schlessinger, Avner [1 ,2 ]
Khuri, Natalia [1 ,2 ,4 ]
Giacomini, Kathleen M. [1 ,2 ,5 ]
Sali, Andrej [1 ,2 ,3 ]
机构
[1] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Calif Inst Quantitat Biosci, San Francisco, CA 94158 USA
[3] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA
[4] Univ Calif San Francisco, Grad Grp Biophys, San Francisco, CA 94158 USA
[5] Univ Calif San Francisco, Inst Human Genet, San Francisco, CA 94158 USA
基金
美国国家卫生研究院;
关键词
Membrane transporter; comparative modeling; ligand docking; protein function prediction; structure-based ligand discovery; ORGANIC CATION TRANSPORTER; MEMBRANE-PROTEIN STRUCTURE; STRUCTURE-BASED DISCOVERY; AMINO-ACID TRANSPORTER-1; TRANSMEMBRANE DOMAIN-I; BLOOD-BRAIN-BARRIER; BACTERIAL HOMOLOG; GENETIC-VARIATION; CRYSTAL-STRUCTURE; FUNCTIONAL-CHARACTERIZATION;
D O I
10.2174/1568026611313070007
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Solute Carrier (SLC) transporters are membrane proteins that transport solutes, such as ions, metabolites, peptides, and drugs, across biological membranes, using diverse energy coupling mechanisms. In human, there are 386 SLC transporters, many of which contribute to the absorption, distribution, metabolism, and excretion of drugs and/or can be targeted directly by therapeutics. Recent atomic structures of SLC transporters determined by X-ray crystallography and NMR spectroscopy have significantly expanded the applicability of structure-based prediction of SLC transporter ligands, by enabling both comparative modeling of additional SLC transporters and virtual screening of small molecules libraries against experimental structures as well as comparative models. In this review, we begin by describing computational tools, including sequence analysis, comparative modeling, and virtual screening, that are used to predict the structures and functions of membrane proteins such as SLC transporters. We then illustrate the applications of these tools to predicting ligand specificities of select SLC transporters, followed by experimental validation using uptake kinetic measurements and other assays. We conclude by discussing future directions in the discovery of the SLC transporter ligands.
引用
收藏
页码:843 / 856
页数:14
相关论文
共 50 条
  • [31] Protein Binder Toolbox for Studies of Solute Carrier Transporters
    Gelova, Zuzana
    Ingles-Prieto, Alvaro
    Bohstedt, Tina
    Frommelt, Fabian
    Chi, Gamma
    Chang, Yung-Ning
    Garcia, Julio
    Wolf, Gernot
    Azzollini, Lucia
    Tremolada, Sara
    Scacioc, Andreea
    Hansen, Jesper S.
    Serrano, Iciar
    Droce, Aida
    Bernal, Jenifer Cuesta
    Burgess-Brown, Nicola A.
    Carpenter, Elisabeth P.
    Duerr, Katharina L.
    Kristensen, Peter
    Geertsma, Eric R.
    Stefanic, Sasa
    Scarabottolo, Lia
    Wiedmer, Tabea
    Puetter, Vera
    Sauer, David B.
    Superti-Furga, Giulio
    JOURNAL OF MOLECULAR BIOLOGY, 2024, 436 (16)
  • [32] Solute carrier transporters: Pharmacogenomics research opportunities in Africa
    Benjeddou, Mongi
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2010, 9 (54): : 9191 - 9195
  • [33] Role of solute carrier transporters in ovarian cancer (Review)
    Quaresima, Barbara
    Scicchitano, Stefania
    Faniello, Maria Concetta
    Mesuraca, Maria
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2025, 55 (02)
  • [34] Role of solute carrier transporters in pancreatic cancer: a review
    Lemstrova, Radmila
    Soucek, Pavel
    Melichar, Bohuslav
    Mohelnikova-Duchonova, Beatrice
    PHARMACOGENOMICS, 2014, 15 (08) : 1133 - 1145
  • [35] Solute carrier transporters: the metabolic gatekeepers of immune cells
    Wenxin Song
    Danyuan Li
    Lei Tao
    Qi Luo
    Ligong Chen
    ActaPharmaceuticaSinicaB, 2020, 10 (01) : 61 - 78
  • [36] Lysosomal solute carrier transporters gain momentum in research
    Bissa, B.
    Beedle, A. M.
    Govindarajan, R.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2016, 100 (05) : 431 - 436
  • [37] Solute carrier transporters: the metabolic gatekeepers of immune cells
    Song, Wenxin
    Li, Danyuan
    Tao, Lei
    Luo, Qi
    Chen, Ligong
    ACTA PHARMACEUTICA SINICA B, 2020, 10 (01) : 61 - 78
  • [38] Phosphate transporters: a tale of two solute carrier families
    Virkki, Leila V.
    Biber, Juerg
    Murer, Heini
    Forster, Ian C.
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2007, 293 (03) : F643 - F654
  • [39] The solute carrier transporters and the brain: Physiological and pharmacological implications
    Hu, Chengliang
    Tao, Lei
    Cao, Xizhi
    Chen, Ligong
    ASIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2020, 15 (02) : 131 - 144
  • [40] THE PHENOTYPING OF SOLUTE CARRIER TRANSPORTERS IN HUMAN PRIMARY HEPATOCYTES
    Bi, Yi-an
    Mathialagan, Sumathy
    Tylaska, Laurie
    Lazzaro, Sarah
    Costales, Chester
    Kimoto, Emi
    Vildhede, Anna
    Hua, Wenyi
    Rodrigues, David
    Tremaine, Larry
    Varma, Manthena V.
    DRUG METABOLISM AND PHARMACOKINETICS, 2019, 34 (01) : S71 - S71