Symmetries and conservation laws of the Euler equations in Lagrangian coordinates

被引:3
|
作者
Shankar, Ravi [1 ,2 ]
机构
[1] Calif State Univ Chico, Dept Math & Stat, Chico, CA 95929 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
Euler equations; Symmetries; Conservation laws; Incompressible flows; Lagrangian coordinates; Time-periodic solution; INFINITE SYMMETRIES; FLUID-FLOW; FORMULATION;
D O I
10.1016/j.jmaa.2016.10.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Euler equations of incompressible inviscid fluid dynamics. We discuss a variational formulation of the governing equations in Lagrangian coordinates. We compute variational symmetries of the action functional and generate corresponding conservation laws in Lagrangian coordinates. We clarify and demonstrate relationships between symmetries and the classical balance laws of energy, linear momentum, center of mass, angular momentum, and the statement of vorticity advection. Using a newly obtained scaling symmetry, we obtain a new conservation law for the Euler equations in Lagrangian coordinates in n-dimensional space. The resulting integral balance relates the total kinetic energy to a new integral quantity defined in Lagrangian coordinates. This relationship implies an inequality which describes the radial deformation of the fluid, and shows the non-existence of time periodic solutions with nonzero, finite energy. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:867 / 881
页数:15
相关论文
共 50 条
  • [31] Rigid symmetries and conservation laws in non-Lagrangian field theory
    Kaparulin, D. S.
    Lyakhovich, S. L.
    Sharapov, A. A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [32] Field port-Lagrangian representation of conservation laws for variational symmetries
    Nishida, Gou
    Yamakita, Masaki
    Luo, Zhi-Wei
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 5875 - +
  • [33] Symmetries of the hyperbolic shallow water equations and the Green Naghdi model in Lagrangian coordinates
    Siriwat, Piyanuch
    Kaewmanee, Chompit
    Meleshko, Sergey V.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2016, 86 : 185 - 195
  • [34] CONSERVATION LAWS AND SYMMETRIES
    DASS, T
    PHYSICAL REVIEW, 1966, 145 (04): : 1011 - &
  • [35] SYMMETRIES OF CONSERVATION LAWS
    Konjik, Sanja
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2005, 77 (91): : 29 - 51
  • [36] Discrete shallow water equations preserving symmetries and conservation laws
    Dorodnitsyn, V. A.
    Kaptsov, E. I.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (08)
  • [37] Nonlocal symmetries and nonlocal conservation laws of Maxwell's equations
    Anco, SC
    Bluman, G
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (07) : 3508 - 3532
  • [38] A METHOD FOR COMPUTING SYMMETRIES AND CONSERVATION-LAWS OF INTEGRODIFFERENTIAL EQUATIONS
    CHETVERIKOV, VN
    KUDRYAVTSEV, AG
    ACTA APPLICANDAE MATHEMATICAE, 1995, 41 (1-3) : 45 - 56
  • [39] Potential symmetries and conservation laws for generalized quasilinear hyperbolic equations
    Nadjafikhah, M.
    Chamazkoti, R. Bakhshandeh
    Ahangari, F.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2011, 32 (12) : 1607 - 1614
  • [40] On the Symmetries and Conservation Laws of the Multidimensional Nonlinear Damped Wave Equations
    Al-Ali, Usamah S.
    Bokhari, Ashfaque H.
    Kara, A. H.
    Zaman, F. D.
    ADVANCES IN MATHEMATICAL PHYSICS, 2017, 2017