Leveraging impurities in recycled lead anodes for sodium-ion batteries

被引:9
|
作者
Eaves-Rathert, Janna [1 ]
Moyer-Vanderburgh, Kathleen [1 ,2 ]
Wolfe, Kody [2 ]
Zohair, Murtaza [2 ,3 ]
Pint, Cary L. [1 ,3 ]
机构
[1] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Interdisciplinary Mat Sci Program, Nashville, TN 37235 USA
[3] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
关键词
Sodium -ion battery; Alloy; Anode; Recycling; Energy storage; Grid storage; LI-ION; TIN ANODES; LITHIUM; NANOCOMPOSITE; PERFORMANCE; ALLOYS; OXIDE; SN; SB; ELECTRODES;
D O I
10.1016/j.ensm.2022.08.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In recent years, the supply chain shock due to the rapid rise of the lithium-ion battery has made alternative chemistries, such as sodium-ion batteries, appealing for low-cost and large-scale energy storage. Meanwhile, the falling popularity of lead acid batteries has potential consequences for the price of scrap lead and its penetration into waste streams. In this work, we upcycle lead alloys from a used lead acid battery into a next-generation sodium-ion system for ultra-low-cost rechargeable batteries. Through evaluation of sodium storage capacity and rate capability, we study the rich interplay of Pb-Sb-Sn microstructure and properties which can be controlled through simple heat treatment of unrefined powders to reach a maximum specific capacity of 522 mAh.g-1. When cycled in the presence of glyme-based electrolytes, the ternary alloys nanostructure to facilitate an optimal balance of power and cycle life. These findings that demonstrate how defects can be leveraged to improve performance bring exciting implications for reducing cost and mitigating volume expansion in other high-value commodities, like tin or silicon.
引用
收藏
页码:552 / 558
页数:7
相关论文
共 50 条
  • [41] Promises and Challenges of Sn-Based Anodes for Sodium-Ion Batteries†
    Hu, Chenjing
    Hou, Xiaoxiao
    Bai, Zhongchao
    Yun, Longteng
    Zhang, Xuanrui
    Wang, Nana
    Yang, Jian
    CHINESE JOURNAL OF CHEMISTRY, 2021, 39 (10) : 2931 - 2942
  • [42] Insights into the Sodiation Kinetics of Si and Ge Anodes for Sodium-Ion Batteries
    Zhang, Jia
    Zheng, Tianye
    Cheng, Ka-wai Eric
    Lam, Kwok-ho
    Boles, Steven T.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (10)
  • [43] Bismuth Vanadate and Molybdate: Stable Alloying Anodes for Sodium-Ion Batteries
    Sottmann, Jonas
    Herrmann, Matthias
    Vajeeston, Ponniah
    Ruud, Amund
    Drathen, Christina
    Emerich, Hermann
    Wragg, David S.
    Fjellvag, Helmer
    CHEMISTRY OF MATERIALS, 2017, 29 (07) : 2803 - 2810
  • [44] Sn-Cu Nanocomposite Anodes for Rechargeable Sodium-Ion Batteries
    Lin, Yong-Mao
    Abel, Paul R.
    Gupta, Asha
    Goodenough, John B.
    Heller, Adam
    Mullins, C. Buddie
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (17) : 8273 - 8277
  • [45] A life cycle assessment of hard carbon anodes for sodium-ion batteries
    Liu, Haoyu
    Xu, Zhen
    Guo, Zhenyu
    Feng, Jingyu
    Li, Haoran
    Qiu, Tong
    Titirici, Magdalena
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2209):
  • [46] Tire-derived carbon composite anodes for sodium-ion batteries
    Li, Yunchao
    Paranthaman, M. Parans
    Akato, Kokouvi
    Naskar, Amit K.
    Levine, Alan M.
    Lee, Richard J.
    Kim, Sang-Ok
    Zhang, Jinshui
    Dai, Sheng
    Manthiram, Arumugam
    JOURNAL OF POWER SOURCES, 2016, 316 : 232 - 238
  • [47] Nickel-templated carbon foam anodes for sodium-ion batteries
    Zeng, Jinjue
    Wang, Tao
    Gu, Xianrui
    Zhu, Hongda
    Xu, Chiwei
    Sun, Dandan
    Ge, Cong
    Ding, Rui
    Li, Jia
    Liu, Jianguo
    Rong, Junfeng
    Wang, Xuebin
    Jiang, Xiangfen
    FLATCHEM, 2023, 40
  • [48] Three-dimensional porous graphene anodes for sodium-ion batteries
    Mace, Annsley
    Montalvo, Melisa
    Lu, Yang
    Wujcik, Evan K.
    Jeon, Ju-Won
    FUNCTIONAL MATERIALS LETTERS, 2020, 13 (01)
  • [49] Capacity fading mechanism of tin phosphide anodes in sodium-ion batteries
    Mogensen, Ronnie
    Maibach, Julia
    Naylor, Andrew J.
    Younesi, Reza
    DALTON TRANSACTIONS, 2018, 47 (31) : 10752 - 10758
  • [50] Sodium-Ion Batteries
    Slater, Michael D.
    Kim, Donghan
    Lee, Eungje
    Johnson, Christopher S.
    ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) : 947 - 958