Leveraging impurities in recycled lead anodes for sodium-ion batteries

被引:9
|
作者
Eaves-Rathert, Janna [1 ]
Moyer-Vanderburgh, Kathleen [1 ,2 ]
Wolfe, Kody [2 ]
Zohair, Murtaza [2 ,3 ]
Pint, Cary L. [1 ,3 ]
机构
[1] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Interdisciplinary Mat Sci Program, Nashville, TN 37235 USA
[3] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
关键词
Sodium -ion battery; Alloy; Anode; Recycling; Energy storage; Grid storage; LI-ION; TIN ANODES; LITHIUM; NANOCOMPOSITE; PERFORMANCE; ALLOYS; OXIDE; SN; SB; ELECTRODES;
D O I
10.1016/j.ensm.2022.08.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In recent years, the supply chain shock due to the rapid rise of the lithium-ion battery has made alternative chemistries, such as sodium-ion batteries, appealing for low-cost and large-scale energy storage. Meanwhile, the falling popularity of lead acid batteries has potential consequences for the price of scrap lead and its penetration into waste streams. In this work, we upcycle lead alloys from a used lead acid battery into a next-generation sodium-ion system for ultra-low-cost rechargeable batteries. Through evaluation of sodium storage capacity and rate capability, we study the rich interplay of Pb-Sb-Sn microstructure and properties which can be controlled through simple heat treatment of unrefined powders to reach a maximum specific capacity of 522 mAh.g-1. When cycled in the presence of glyme-based electrolytes, the ternary alloys nanostructure to facilitate an optimal balance of power and cycle life. These findings that demonstrate how defects can be leveraged to improve performance bring exciting implications for reducing cost and mitigating volume expansion in other high-value commodities, like tin or silicon.
引用
收藏
页码:552 / 558
页数:7
相关论文
共 50 条
  • [1] Alloy anodes for sodium-ion batteries
    Shu-Min Zheng
    Yan-Ru Tian
    Ya-Xia Liu
    Shuang Wang
    Chao-Quan Hu
    Bao Wang
    Kai-Ming Wang
    Rare Metals, 2021, 40 : 272 - 289
  • [2] Alloy anodes for sodium-ion batteries
    Shu-Min Zheng
    Yan-Ru Tian
    Ya-Xia Liu
    Shuang Wang
    Chao-Quan Hu
    Bao Wang
    Kai-Ming Wang
    RareMetals, 2021, 40 (02) : 272 - 289
  • [3] Developing anodes for sodium-ion batteries
    Scott, Alex
    CHEMICAL & ENGINEERING NEWS, 2021, 99 (08) : 12 - 12
  • [4] Alloy anodes for sodium-ion batteries
    Zheng, Shu-Min
    Tian, Yan-Ru
    Liu, Ya-Xia
    Wang, Shuang
    Hu, Chao-Quan
    Wang, Bao
    Wang, Kai-Ming
    RARE METALS, 2021, 40 (02) : 272 - 289
  • [5] Bulk Alloy Anodes for Sodium-Ion Batteries
    Wang, Xiaohan
    Zhao, Xiaoying
    Wang, Liubin
    BATTERIES & SUPERCAPS, 2024,
  • [6] Isomers of terephthalate derivatives as anodes for sodium-ion batteries
    Tang, Mei
    Jia, Kangkang
    Ma, Guandie
    Wu, Fei
    Xiang, Yunjie
    Li, Qiulin
    Chen, Qianwei
    Luo, Yuansheng
    Xu, Maowen
    Bao, Shu-Juan
    INORGANIC CHEMISTRY FRONTIERS, 2024, 11 (16): : 5103 - 5110
  • [7] Nano Hard Carbon Anodes for Sodium-Ion Batteries
    Kim, Dae-Yeong
    Kim, Dong-Hyun
    Kim, Soo-Hyun
    Lee, Eun-Kyung
    Park, Sang-Kyun
    Lee, Ji-Woong
    Yun, Yong-Sup
    Choi, Si-Young
    Kang, Jun
    NANOMATERIALS, 2019, 9 (05)
  • [8] Recent Advances in Carbon Anodes for Sodium-Ion Batteries
    Zhang, Tengfei
    Li, Chen
    Wang, Fan
    Noori, Abolhassan
    Mousavi, Mir F.
    Xia, Xinhui
    Zhang, Yongqi
    CHEMICAL RECORD, 2022, 22 (10):
  • [9] Exploring the application of carbon xerogels as anodes for sodium-ion batteries
    Cuesta, Nuria
    Camean, Ignacio
    Arenillas, Ana
    Garcia, Ana B.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 308
  • [10] Research Trend on Conversion Reaction Anodes for Sodium-ion Batteries
    Kim, Suji
    Kim, You Jin
    Ryu, Won-Hee
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2019, 22 (01): : 22 - 35