Pharmacodynamic potentiation of antiepileptic drugs' effects by some HMG-CoA reductase inhibitors against audiogenic seizures in DBA/2 mice

被引:48
|
作者
Russo, Emilio [1 ]
di Paola, Eugenio Donato [1 ]
Gareri, Pietro [1 ]
Siniscalchi, Antonio [2 ]
Labate, Angelo [3 ]
Gallelli, Luca [1 ]
Citraro, Rita [1 ]
De Sarro, Giovambattista [1 ]
机构
[1] Magna Graecia Univ Catanzaro, Clin Pharmacol Unit, Dept Hlth Sci, Sch Med, I-88100 Catanzaro, Italy
[2] Annunziata Hosp, Neurol Unit, Dept Neurosci, Cosenza, Italy
[3] Magna Graecia Univ Catanzaro, Sch Med, Inst Neurol, I-88100 Catanzaro, Italy
关键词
Epilepsy; Cholesterol; Statins; Anticonvulsant potency; Pharmacodynamic; AEDs; Drug-drug Interaction; HIPPOCAMPAL CELL-DEATH; ACID-INDUCED SEIZURES; HYPERKINETIC MOVEMENT-DISORDERS; DEEP PREPIRIFORM CORTEX; TEMPORAL-LOBE EPILEPSY; NITRIC-OXIDE SYNTHASE; CORTICAL-NEURONS; INDUCED EXCITOTOXICITY; ATORVASTATIN TREATMENT; NEUROLOGICAL DEFICIT;
D O I
10.1016/j.phrs.2012.12.002
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
It is known that the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) are effective in both the primary and the secondary prevention of ischemic heart disease. Increasing evidence indicates that statins have protective effects in several neurological diseases including stroke, cerebral ischemia, Parkinson disease, multiple sclerosis, traumatic brain injury and epilepsy. The aim of the present research was to evaluate the effects of some HMG-CoA reductase inhibitors (i.e. lovastatin, simvastatin, atorvastatin, fluvastatin and pravastatin) commonly used for the treatment of hypercholesterolemia in the DBA/2 mice, an animal model of generalized tonic-clonic seizures. Furthermore, the co-administration of these compounds with some antiepileptic drugs (AEDs; i.e. carbamazepine, diazepam, felbamate, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, phenobarbital, phenytoin, topiramate and valproate) was studied in order to identify possible positive pharmacological interactions. Simvastatin only was active against both the tonic and clonic phase of audiogenic seizures, whereas the other statins tested were only partially effective against the tonic phase with the following order of potency: lovastatin > fluvastatin > atorvastatin; pravastatin was completely ineffective up to the dose of 150 mg/kg. The co-administration of ineffective doses of all statins with AEDs generally increased the potency of the latter reducing their ED50 values. In particular, simvastatin was the most active in potentiating the activity of AEDs and the combinations of statins with carbamazepine, diazepam, felbamate, lamotrigine, topiramate and valproate were the most favorable, whereas, the co-administrations with the other AEDs studied was in most cases neutral. The increase in potency was generally associated with an enhancement of motor impairment (TD50); however, the therapeutic index (TD50/ED50) of combined treatment of AEDs with statins was predominantly more favorable than control. Statins administration did not significantly affect the total plasma but, in some cases, it increased the free plasma levels and the brain concentrations of some of the AEDs studied (i.e. carbamazepine, diazepam, phenytoin and valproate); however, these alterations where not statistically significant. Therefore, with the exception of the latter compounds, we might exclude pharmacokinetic interactions and conclude that for the most of AEDs, potentiation was of pharmacodynamic nature. In conclusion, simvastatin, fluvastatin, lovastatin and atorvastatin showed an additive anticonvulsant effect when co-administered with some AEDs, most notably carbamazepine, diazepam, felbamate, lamotrigine, topiramate and valproate, implicating a possible therapeutic relevance of such drug combinations. The present results suggest that statins, besides the beneficial cardiovascular effects, might be able to affect brain areas, which might participate in the regulation of seizure susceptibility. (C) 2013 Published by Elsevier Ltd.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [41] Effects of a physician education program on prescribing of HMG-CoA reductase inhibitors
    Boreen, D
    Juge, D
    Stahl, J
    Torborg, S
    FORMULARY, 1998, 33 (08) : 802 - +
  • [43] KNOWN EFFECTS OF TREATMENT WITH HMG-COA REDUCTASE INHIBITORS (CHOLESTEROL-SYNTHESIS INHIBITORS)
    KNISEL, W
    EGGSTEIN, M
    INTERNIST, 1989, 30 (12): : 776 - 783
  • [44] Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors
    Hamelin, BA
    Turgeon, J
    TRENDS IN PHARMACOLOGICAL SCIENCES, 1998, 19 (01) : 26 - 37
  • [45] Monitoring the cellular effects of HMG-CoA reductase inhibitors in vitro and ex vivo
    Cicha, I
    Schneiderhan-Marra, N
    Yilmaz, A
    Garlichs, CD
    Goppelt-Struebe, M
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2004, 24 (11) : 2046 - 2050
  • [46] Molecular effects of HMG-CoA reductase inhibitors on smooth muscle cell proliferation
    Skaletz-Rorowski, A
    Eschert, H
    Pawlus, E
    Breithardt, G
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2001, 37 (01) : 337 - 338
  • [47] Effects of HMG-CoA Reductase Inhibitors on Skeletal MuscleAre all Statins the Same?
    Marc Evans
    Alan Rees
    Drug Safety, 2002, 25 : 649 - 663
  • [48] Prenatal exposure to HMG-CoA reductase inhibitors: Effects on fetal and neonatal outcomes
    Taguchi, Nobuko
    Rubin, Evelyn T.
    Hosokawa, Akiko
    Choi, Jacquelyn
    Ying, Angela Yating
    Moretti, Myla E.
    Koren, Gideon
    Ito, Shinya
    REPRODUCTIVE TOXICOLOGY, 2008, 26 (02) : 175 - 177
  • [49] Effects of HMG-CoA reductase inhibitors on the pharmacokinetics of nifedipine in rats: Possible role of P-gp and CYP3A4 inhibition by HMG-CoA reductase inhibitors
    Lee, Chong-Ki
    Choi, Jun-Shik
    Choi, Dong-Hyun
    PHARMACOLOGICAL REPORTS, 2015, 67 (01) : 44 - 51
  • [50] Effects of HMG-CoA reductase inhibitors on the pharmacokinetics of nifedipine in rats: Possible role of P-gp and CYP3A4 inhibition by HMG-CoA reductase inhibitors
    Chong-Ki Lee
    Jun-Shik Choi
    Dong-Hyun Choi
    Pharmacological Reports, 2015, 67 : 44 - 51