Spectral and Spatial Classification of Hyperspectral Images Based on ICA and Reduced Morphological Attribute Profiles

被引:77
|
作者
Falco, Nicola [1 ]
Benediktsson, Jon Atli [1 ]
Bruzzone, Lorenzo [2 ]
机构
[1] Univ Iceland, Fac Elect & Comp Engn, IS-101 Reykjavik, Iceland
[2] Univ Trento, Dept Informat Engn & Comp Sci, I-38050 Trento, Italy
来源
关键词
Dimensionality reduction; hyperspectral images; independent component analysis (ICA); mathematical morphology (MM); reduced attribute profiles (rAPs); remote sensing (RS); supervised classification; INDEPENDENT-COMPONENT ANALYSIS; FEATURE-EXTRACTION;
D O I
10.1109/TGRS.2015.2436335
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The availability of hyperspectral images with improved spectral and spatial resolutions provides the opportunity to obtain accurate land-cover classification. In this paper, a novel methodology that combines spectral and spatial information for supervised hyperspectral image classification is proposed. A feature reduction strategy based on independent component analysis is the main core of the spectral analysis, where the exploitation of prior information coupled to the evaluation of the reconstruction error assures the identification of the best class-informative subset of independent components. Reduced attribute profiles (APs), which are designed to address well-known issues related to information redundancy that affect the common morphological APs, are then employed for the modeling and fusion of the contextual information. Four real hyperspectral data sets, which are characterized by different spectral and spatial resolutions with a variety of scene typologies (urban, agriculture areas), have been used for assessing the accuracy and generalization capabilities of the proposed methodology. The obtained results demonstrate the classification effectiveness of the proposed approach in all different scene typologies, with respect to other state-of-the-art techniques.
引用
收藏
页码:6223 / 6240
页数:18
相关论文
共 50 条
  • [41] SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGES WITH GAUSSIAN PROCESS
    Sun, Shujin
    Zhong, Ping
    Xiao, Huaitie
    Chen, Yuting
    Gong, Zhiqiang
    Wang, Runsheng
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 473 - 476
  • [42] A Probabilistic Framework for Spectral-Spatial Classification of Hyperspectral Images
    Liu, Jinlin
    Lu, Wenkai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (09): : 5375 - 5384
  • [43] A New Methodology for Spectral-Spatial Classification of Hyperspectral Images
    Miao, Zelang
    Shi, Wenzhong
    JOURNAL OF SENSORS, 2016, 2016
  • [44] Convolutional neural network for spectral–spatial classification of hyperspectral images
    Hongmin Gao
    Yao Yang
    Chenming Li
    Xiaoke Zhang
    Jia Zhao
    Dan Yao
    Neural Computing and Applications, 2019, 31 : 8997 - 9012
  • [45] Spectral Unmixing for the Classification of Hyperspectral Images at a Finer Spatial Resolution
    Villa, Alberto
    Chanussot, Jocelyn
    Benediktsson, Jon Atli
    Jutten, Christian
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (03) : 521 - 533
  • [46] Spatial-spectral classification of hyperspectral images based on multiple fractal-based features
    Beirami, Behnam Asghari
    Mokhtarzade, Mehdi
    GEOCARTO INTERNATIONAL, 2022, 37 (01) : 231 - 245
  • [47] JOINT MULTILAYER SPATIAL-SPECTRAL CLASSIFICATION OF HYPERSPECTRAL IMAGES BASED ON CNN AND CONVLSTM
    Feng, Jie
    Wu, Xiande
    Chen, Jiantong
    Zhang, Xiangrong
    Tang, Xu
    Li, Di
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 588 - 591
  • [48] Minimum Spanning Forest Based Approach for Spatial-Spectral Hyperspectral Images Classification
    Poorahangaryan, F.
    Ghassemian, H.
    2016 EIGHTH INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2016, : 116 - 121
  • [49] Classification of Hyperspectral Images Based on Multiclass Spatial-Spectral Generative Adversarial Networks
    Feng, Jie
    Yu, Haipeng
    Wang, Lin
    Cao, Xianghai
    Zhang, Xiangrong
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (08): : 5329 - 5343
  • [50] Spectral-Spatial Classification of Hyperspectral Images Based on Hidden Markov Random Fields
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    Ulfarsson, Magnus Orn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (05): : 2565 - 2574