A study on blending polyethylene terephthalate with titanium dioxide particles in melt spinning process parameter optimization

被引:12
|
作者
Kuo, Chung-Feng Jeffrey [1 ]
Tzeng, Ren Er [1 ]
Lan, Wei Lun [1 ]
Peng, Kai-Ching [2 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Mat Sci & Engn, Taipei 106, Taiwan
[2] Natl Taiwan Univ Sci & Technol, Grad Inst Automat & Control, Taipei 106, Taiwan
关键词
melt spinning; Taguchi method; Data Envelopment Analysis; Principal Component Analysis; Back-propagation Neural Network; PRINCIPAL COMPONENT ANALYSIS; MULTIRESPONSE PROBLEM; TAGUCHI; CRYSTALLIZATION;
D O I
10.1177/0040517512467131
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
This study blended polyethylene terephthalate and titanium dioxide nano-particles to produce titanium dioxide-containing (TiO2) functional fiber, and discussed its ultimate tensile strength, elongation and modulus of resilience using the Taguchi orthogonal arrays for experiment planning. The main effect analysis and analysis of variance theory were applied to obtain the single attribute optimum parameter, and Data Envelope Analysis and Principle Component Analysis were conducted to determine the combination of the optimum process parameter levels. Finally, the confidence interval was calculated by confirmation test, and a Back-propagation Neural Network was applied to construct the prediction system for melting spinning process parameters. After the learning and training of the network, the prediction error rate of the prediction system was below 5%.
引用
收藏
页码:813 / 826
页数:14
相关论文
共 50 条
  • [21] Fused deposition modeling process parameter optimization on the development of graphene enhanced polyethylene terephthalate glycol
    Raja, S.
    Jayalakshmi, M.
    Rusho, Maher Ali
    Selvaraj, Vinoth Kumar
    Subramanian, Jeyanthi
    Yishak, Simon
    Kumar, T. Arun
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [22] Parameter optimization in melt spinning by neural networks and genetic algorithms
    Chang-Chiun Huang
    Tsann-Tay Tang
    The International Journal of Advanced Manufacturing Technology, 2006, 27 : 1113 - 1118
  • [23] Parameter optimization in melt spinning by neural networks and genetic algorithms
    Huang, CC
    Tang, TT
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2006, 27 (11-12): : 1113 - 1118
  • [24] Fabrication of Carbon Nanotubes Reinforced Polyethylene Fibers by Melt Spinning: Process Optimization and Mechanical Strength Characterization
    Sulong, Abu Bakar
    Park, Joohyuk
    ADVANCED MATERIALS AND PROCESSING, 2007, 26-28 : 289 - +
  • [25] Optimization of catalyst content for recycled polyethylene terephthalate (PET) and polycarbonate (PC) blending
    Marjan Lotfi
    Polymer Bulletin, 2023, 80 : 12319 - 12331
  • [26] Optimization of catalyst content for recycled polyethylene terephthalate (PET) and polycarbonate (PC) blending
    Lotfi, Marjan
    POLYMER BULLETIN, 2023, 80 (11) : 12319 - 12331
  • [27] IDENTIFYING CRITICAL PROCESS VARIABLES IN POLY(ETHYLENE-TEREPHTHALATE) MELT SPINNING
    DUTTA, A
    NADKARNI, VM
    TEXTILE RESEARCH JOURNAL, 1984, 54 (01) : 35 - 42
  • [28] Development of disperse dyes polypropylene fiber and process parameter optimizationPart II: Dyeable polypropylene fiber production and melt spinning process parameter optimization
    Kuo, Chung-Feng Jeffrey
    Lan, Wei-Lun
    Dong, Ming-Yan
    Chen, Shih-Hsiung
    Lin, Fang-Sian
    TEXTILE RESEARCH JOURNAL, 2018, 88 (13) : 1505 - 1516
  • [29] Optimization of hot drawing process of ultra-high molecular weight polyethylene monofilament prepared by melt spinning
    Qin, Shengxue
    Jin, Tongcheng
    Zhang, Hongbin
    Zhou, Haiping
    Liu, Jie
    Xu, Xingming
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (44)
  • [30] High-speed melt spinning of polyethylene terephthalate with periodic oscillation of take-up velocity
    Takarada, W
    Kazama, K
    Ito, H
    Kikutani, T
    INTERNATIONAL POLYMER PROCESSING, 2004, 19 (04) : 380 - 387