Nonparametric quantile regression estimation for functional data with responses missing at random

被引:5
|
作者
Xu, Dengke [1 ]
Du, Jiang [2 ]
机构
[1] Zhejiang Agr & Forestry Univ, Dept Stat, Hangzhou 311300, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Quantile regression; Functional data analysis; Missing at random; Inverse probability weighting estimator; Asymptotic normality;
D O I
10.1007/s00184-020-00769-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents the nonparametric quantile regression estimation for the regression function operator when the functional data with the responses missing at random are considered. Then, the large sample properties of the proposed estimator are established under some mild conditions. Finally, a simulation study is conducted to investigate the finite sample properties of the proposed method.
引用
收藏
页码:977 / 990
页数:14
相关论文
共 50 条
  • [31] RECURSIVE NONPARAMETRIC REGRESSION ESTIMATION FOR INDEPENDENT FUNCTIONAL DATA
    Slaoui, Yousri
    STATISTICA SINICA, 2020, 30 (01) : 417 - 437
  • [32] From Conditional Quantile Regression to Marginal Quantile Estimation with Applications to Missing Data and Causal Inference
    Ma, Huijuan
    Qin, Jing
    Zhou, Yong
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2023, 41 (04) : 1377 - 1390
  • [33] Smoothed empirical likelihood for quantile regression models with response data missing at random
    Shuanghua Luo
    Changlin Mei
    Cheng-yi Zhang
    AStA Advances in Statistical Analysis, 2017, 101 : 95 - 116
  • [34] Smoothed empirical likelihood for quantile regression models with response data missing at random
    Luo, Shuanghua
    Mei, Changlin
    Zhang, Cheng-yi
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2017, 101 (01) : 95 - 116
  • [35] Composite Quantile Regression for Varying Coefficient Models with Response Data Missing at Random
    Luo, Shuanghua
    Zhang, Cheng-yi
    Wang, Meihua
    SYMMETRY-BASEL, 2019, 11 (09):
  • [36] Bayesian nonparametric quantile process regression and estimation of marginal quantile effects
    Xu, Steven G.
    Reich, Brian J.
    BIOMETRICS, 2023, 79 (01) : 151 - 164
  • [37] NONPARAMETRIC QUANTILE REGRESSION WITH CENSORED-DATA
    DABROWSKA, DM
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1992, 54 : 252 - 259
  • [38] Nonparametric quantile regression for twice censored data
    Volgushew, Stanislav
    Dette, Holger
    BERNOULLI, 2013, 19 (03) : 748 - 779
  • [39] Imputation in nonparametric quantile regression with complex data
    Hu, Yanan
    Yang, Yaqi
    Wang, Chunyu
    Tian, Maozai
    STATISTICS & PROBABILITY LETTERS, 2017, 127 : 120 - 130
  • [40] Parametric and nonparametric conditional quantile regression modeling for dependent spatial functional data
    Rachdi, Mustapha
    Laksaci, Ali
    Al-Awadhi, Fahimah A.
    SPATIAL STATISTICS, 2021, 43