Morphology and rheology of compatibilized polymer blends: Diblock compatibilizers vs crosslinked reactive compatibilizers

被引:34
|
作者
DeLeo, Candice L. [1 ]
Velankar, Sachin S. [1 ]
机构
[1] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA
基金
美国国家科学基金会;
关键词
creep; drops; elastic constants; optical microscopy; polymer blends; polymer structure; rheology; solubility; stress effects; viscosity;
D O I
10.1122/1.2995857
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Reactive compatibilization is commonly used when blending immiscible homopolymers. The compatibilizers formed from the interfacial coupling of two types of reactive chains often have a graft copolymer architecture. Here we consider the case where both reactive chains are multifunctional, leading to a crosslinked copolymer at the interface. Experiments were conducted on a model blend of similar to 30% polydimethylsiloxane drops in a polyisoprene matrix. Compatibilizer was formed by an interfacial reaction between amine-functional polydimethylsiloxane and maleic anhydride-functional polyisoprene. Both species were multifunctional, and therefore capable of interfacial crosslinking. Optical microscopy showed some unusual features including drop clusters, nonspherical drops, and some drops with apparently nonsmooth surfaces. All these features suggest that a crosslinked "skin" covers the interface of the drops. Rheologically, the reactively compatibilized blend showed gel-like behavior in oscillatory experiments, enhanced viscosity and elastic recovery at low stresses, and strong viscosity overshoots in creep experiments, all of which are likely attributable to drop clustering. At the highest stress studied (400 Pa), the viscosity of the reactively compatibilized blend is comparable to that of a similar blend compatibilized by diblock copolymer. This suggests that, in practical processing operations that occur at even higher stresses, interfacial crosslinking by multifunctional chains will not adversely affect processability.
引用
收藏
页码:1385 / 1404
页数:20
相关论文
共 50 条
  • [21] Block-graft copolymers as compatibilizers in polymer blends
    Deutsches Kunststoff-Inst, Darmstadt, Germany
    Polymer, 17 (3871-3877):
  • [22] Patchy stereocomplex micelles as efficient compatibilizers for polymer blends
    Schaller, Roman
    Schmidt, Marius
    Schweimer, Kristian
    Schmalz, Holger
    POLYMER CHEMISTRY, 2024, 15 (30) : 3100 - 3112
  • [23] BLOCK AND GRAFT-COPOLYMERS AS COMPATIBILIZERS IN POLYMER BLENDS
    LAUSBERG, D
    MUHLBACH, K
    TAUBITZ, C
    ANGEWANDTE MAKROMOLEKULARE CHEMIE, 1988, 162 : 53 - 68
  • [24] Block-graft copolymers as compatibilizers in polymer blends
    Braun, D
    Fischer, M
    Hellmann, GP
    POLYMER, 1996, 37 (17) : 3871 - 3877
  • [25] Designing compatibilizers to reduce interfacial tension in polymer blends
    Lyatskaya, Y
    Gersappe, D
    Gross, NA
    Balazs, AC
    JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (05): : 1449 - 1458
  • [26] Advances in Nonreactive Polymer Compatibilizers for Commodity Polyolefin Blends
    Lin, Ting-Wei
    Padilla-Velez, Omar
    Kaewdeewong, Parin
    Lapointe, Anne M.
    Coates, Geoffrey W.
    Eagan, James M.
    CHEMICAL REVIEWS, 2024, 124 (16) : 9609 - 9632
  • [27] A study on the PP/PS blends with nylon 6 reactive compatibilizers
    Seo, SS
    Lee, KY
    Kim, SH
    Kim, DC
    Lee, SG
    POLYMER-KOREA, 2002, 26 (01) : 71 - 79
  • [28] REACTIVE COMPATIBILIZERS FOR BLENDS OF NYLON-6 WITH STYRENIC POLYMERS
    PARK, I
    PAUL, DR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 204 : 131 - POLY
  • [29] Effect of novel compatibilizers on the properties and morphology of PP/PC blends
    Dai, Shanshan
    Ye, Lin
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2008, 19 (08) : 1069 - 1076
  • [30] Effect of compatibilizers on morphology and mechanical properties of polyketone/polycarbonate blends
    Jeon, Ikseong
    Lee, Mingyu
    Jho, Young
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252