Radius of Convergence of p-adic Connections and the p-adic Rolle Theorem

被引:2
|
作者
Baldassarri, Francesco [1 ]
机构
[1] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
关键词
p-adic connections; Berkovich curves;
D O I
10.1007/s00032-013-0208-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply the theory of the radius of convergence of a p-adic connection [2] to the special case of the direct image of the constant connection via a finite morphism of compact p-adic curves, smooth in the sense of rigid geometry. We detail in sections 1 and 2, how to obtain convergence estimates for the radii of convergence of analytic sections of such a finite morphism. In the case of an ,tale covering of curves with good reduction, we get a lower bound for that radius, corollary 3.3, and obtain, via corollary 3.7, a new geometric proof of a variant of the p-adic Rolle theorem of Robert and Berkovich, theorem 0.2. We take this opportunity to clarify the relation between the notion of radius of convergence used in [2] and the more intrinsic one used by Kedlaya [16, Def. 9.4.7.].
引用
收藏
页码:397 / 419
页数:23
相关论文
共 50 条
  • [11] The Ward property for a P-adic basis and the P-adic integral
    Bongiorno, B
    Di Piazza, L
    Skvortsov, VA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 285 (02) : 578 - 592
  • [12] p-adic Welch Bounds and p-adic Zauner Conjecture
    Krishna, K. M.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2024, 16 (03) : 264 - 274
  • [13] On a p-adic invariant cycles theorem
    Chiarellotto, Bruno
    Coleman, Robert
    Di Proietto, Valentina
    Iovita, Adrian
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 711 : 55 - 74
  • [14] A Kunneth theorem for p-adic groups
    Raghuram, A.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2007, 50 (03): : 440 - 446
  • [15] p-Adic differential equations and p-adic coefficients on curves
    Christol, G
    Mebkhout, Z
    ASTERISQUE, 2002, (279) : 125 - +
  • [16] A p-ADIC SECOND MAIN THEOREM
    Huynh, Dinh tuan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (03) : 1231 - 1238
  • [17] ON THE p-ADIC SECOND MAIN THEOREM
    Levin, Aaron
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (02) : 633 - 640
  • [18] On approximation of p-adic numbers by p-adic algebraic numbers
    Beresnevich, VV
    Bernik, VI
    Kovalevskaya, EI
    JOURNAL OF NUMBER THEORY, 2005, 111 (01) : 33 - 56
  • [19] P-adic Measures and P-adic Spaces of Continuous Functions
    Katsaras, A. K.
    NOTE DI MATEMATICA, 2010, 30 (01): : 61 - 85
  • [20] A p-adic local monodromy theorem
    Kedlaya, KS
    ANNALS OF MATHEMATICS, 2004, 160 (01) : 93 - 184