Effects of the Transport/Catalyst Layer Interface and Catalyst Loading on Mass and Charge Transport Phenomena in Polymer Electrolyte Membrane Water Electrolysis Devices

被引:125
|
作者
Lopata, J. [1 ]
Kang, Z. [2 ]
Young, J. [2 ]
Bender, G. [2 ]
Weidner, J. W. [1 ]
Shimpalee, S. [1 ]
机构
[1] Univ South Carolina, Dept Chem Engn, Columbia, SC 29208 USA
[2] Natl Renewable Energy Lab Golden, Golden, CO USA
关键词
PROTON TRANSPORT; PERFORMANCE; CELLS; ANODE; ENHANCEMENT;
D O I
10.1149/1945-7111/ab7f87
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The properties of porous transport layers (PTL) in electrolysis devices and their effects on cell performance have been studied extensively in recent literature. This paper provides a detailed analysis with regards to the transport in the catalyst layer (CL). The work demonstrated that the catalyst loading affects the sensitivity of electrolysis performance to PTL properties, particularly those of the PTL surface in contact with the CL. It was demonstrated that upon reducing catalyst loading, PTL properties had an increased effect on the performance of PEMWE cells. While we observed mild performance variations among PTLs when using a high anode catalyst loading, strong correlations between PTL surface properties and cell performance existed at a low catalyst loading. PTL properties affected performance by influencing the in-plane conductivity and permeability of the CL. The variation of apparent exchange current density and apparent CL bubble coverage with the stoichiometric flow rate was studied at low anode feed rates. This led to the emergence of a PTL grain size effect on apparent bubble coverage at high catalyst loading. We provide a descriptive analysis of the phenomena causing voltage losses in PEMWE devices. These findings are important for electrochemical modeling and designing the PTL/CL interface. (c) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Oxygen-evolution catalyst design for polymer-electrolyte-membrane electrolysis
    Boettcher, Shannon
    Krivina, Raina
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [42] On the influence of porous transport layers parameters on the performances of polymer electrolyte membrane water electrolysis cells
    Pushkarev, A. S.
    Pushkareva, I., V
    Solovyev, M. A.
    Prokop, M.
    Bystron, T.
    Rajagopalan, S. K.
    Bouzek, K.
    Grigoriev, S. A.
    ELECTROCHIMICA ACTA, 2021, 399
  • [43] Mechanism of improving oxygen transport resistance of polytetrafluoroethylene in catalyst layer for polymer electrolyte fuel cells
    Wan, Zhaohui
    Liu, Sufen
    Zhong, Qing
    Jin, Aiping
    Pan, Mu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (15) : 7456 - 7464
  • [44] Probing multiphase reactive transport interactions in the polymer electrolyte fuel cell catalyst layer degradation
    Goswami, Navneet
    Grunewald, Jonathan B.
    Fuller, Thomas F.
    Mukherjee, Partha P.
    ELECTROCHIMICA ACTA, 2024, 486
  • [45] Correlating nanostructure features to transport properties of polymer electrolyte membrane electrolyzer anode catalyst layers
    Seip, Tess
    Shaigan, Nima
    Dinu, Marius
    Fatih, Khalid
    Bazylak, Aimy
    JOURNAL OF POWER SOURCES, 2023, 559
  • [46] Influence of Operating Conditions and Material Properties on the Mass Transport Losses of Polymer Electrolyte Water Electrolysis
    Suermann, Michel
    Takanohashi, Kazuhiro
    Lamibrac, Adrien
    Schmidt, Thomas J.
    Buchi, Felix N.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (09) : F973 - F980
  • [47] Experimental Study of Effects of Operating Conditions on Water Transport Phenomena in the Cathode of Polymer Electrolyte Membrane Fuel Cell
    Seo, Sang Hern
    Lee, Chang Sik
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2011, 8 (06):
  • [48] Reaction and Mass Transport Simulation of Polymer Electrolyte Fuel Cell for the Analysis of the Key Factors Affecting the Output Performance in the Catalyst Layer
    Kotoi, R.
    Inoue, G.
    Kawase, M.
    POLYMER ELECTROLYTE FUEL CELLS 16 (PEFC 16), 2016, 75 (14): : 385 - 392
  • [49] AN ANALYSIS OF THE WATER TRANSPORT PROPERTIES OF POLYMER ELECTROLYTE MEMBRANE
    Aotani, K.
    Miyazaki, S.
    Kubo, N.
    Katsuta, M.
    PROTON EXCHANGE MEMBRANE FUEL CELLS 8, PTS 1 AND 2, 2008, 16 (02): : 341 - +
  • [50] Water transport in polymer electrolyte membrane fuel cells
    Jiao, Kui
    Li, Xianguo
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2011, 37 (03) : 221 - 291