Consider the inverse problem of determining the potential q from the Neumann to Dirichlet map Lambda(q) of the wave equation u(tt) - Delta u + qu = 0 in Omega x (0, T) with u(x, 0) = u(t) (x, 0) = 0. In this paper, a nearly Lipschitz-type stability estimate is established for the inverse problem: for any small epsilon > 0, there exists beta(0) > 0 such that parallel to q(1) - q(2)parallel to (infinity)(L)((Omega)) <= C parallel to Lambda(q1) - Lambda(q2) parallel to(1-epsilon)(*) when parallel to q(1) - q(2)parallel to(H beta (Rn)) <= M for some beta > beta(0). Here, parallel to.parallel to(*) represents the operator norm.
机构:
Univ Hyogo, Grad Sch Mat Sci, Dept Math Sci, Himeji, Hyogo 6712280, JapanUniv Hyogo, Grad Sch Mat Sci, Dept Math Sci, Himeji, Hyogo 6712280, Japan
Nagayasu, Sei
Uhlmann, Gunther
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Math, Seattle, WA 98195 USA
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USAUniv Hyogo, Grad Sch Mat Sci, Dept Math Sci, Himeji, Hyogo 6712280, Japan
Uhlmann, Gunther
Wang, Jenn-Nan
论文数: 0引用数: 0
h-index: 0
机构:
Natl Taiwan Univ, Dept Math, NCTS Taipei, Taipei 106, TaiwanUniv Hyogo, Grad Sch Mat Sci, Dept Math Sci, Himeji, Hyogo 6712280, Japan