High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses

被引:22
|
作者
Szwaj, C. [1 ,2 ]
Evain, C. [1 ,2 ]
Le Parquier, M. [2 ]
Roy, P. [3 ]
Manceron, L. [3 ]
Brubach, J. -B. [3 ]
Tordeux, M. -A. [3 ]
Bielawski, S. [1 ,2 ]
机构
[1] Univ Lille 1, UMR CNRS 8523, Lab PhLAM, Sci & Technol, F-59655 Villeneuve Dascq, France
[2] Ctr Etud Rech & Applicat CERLA, F-59655 Villeneuve Dascq, France
[3] Synchrotron SOLEIL, BP 48, F-91192 Gif Sur Yvette, France
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2016年 / 87卷 / 10期
关键词
TO-DIGITAL CONVERTER; SYNCHROTRON-RADIATION; GALLIUM-PHOSPHIDE; SPECTROSCOPY; TRANSFORMATION; BEAM;
D O I
10.1063/1.4964702
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Single-shot recording of terahertz electric signals has recently become possible at high repetition rates, by using the photonic time-stretch electro-optic sampling (EOS) technique. However the moderate sensitivity of time-stretch EOS is still a strong limit for a range of applications. Here we present a variant enabling to increase the sensitivity of photonic time-stretch for free-propagating THz signals. The ellipticity of the laser probe is enhanced by adding a set of Brewster plates, as proposed by Ahmed et al. [Rev. Sci. Instrum. 85, 013114 (2014)] in a different context. The method is tested using the high repetition rate terahertz coherent synchrotron radiation source of the SOLEIL synchrotron radiation facility. The signal-to-noise ratio of our terahertz digitizer could thus be straightforwardly improved by a factor approximate to 6.5, leading to a noise-equivalent input electric field below 1.25 V/cm inside the electro-optic crystal, over the 0-300 GHz band (i.e., 2.3 mu V/cm/root Hz). The sensitivity is scalable with respect to the available laser power, potentially enabling further sensitivity improvements when needed. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Electro-optic modulator based on a photonic crystal slab with electro-optic polymer
    Gao, Yonghao
    Huang, Xinnan
    Xu, Xingsheng
    OPTICS EXPRESS, 2014, 22 (07): : 8765 - 8778
  • [42] Time-domain characterization of electric field vector in multi-terahertz pulses using polarization-modulated electro-optic sampling
    Kanda, Natsuki
    Nakagawa, Mayuri
    Murotani, Yuta
    Matsunaga, Ryusuke
    OPTICS EXPRESS, 2024, 32 (02) : 1576 - 1584
  • [43] Terahertz imaging with an electro-optic transceiver
    Chen, Q
    Zhang, XC
    LEOS 2000 - IEEE ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS. 1 & 2, 2000, : 744 - 745
  • [44] A Unified Framework for Photonic Time-Stretch Systems
    Zhou, Yiming
    Chan, Jacky C. K.
    Jalali, Bahram
    LASER & PHOTONICS REVIEWS, 2022, 16 (08)
  • [45] Numeric simulation of RF modulated optical pulses propagation in photonic time-stretch system
    Starikov, R. S.
    Nebavskiy, V. A.
    Zlokazov, E. Yu.
    ASIA-PACIFIC CONFERENCE ON FUNDAMENTAL PROBLEMS OF OPTO- AND MICROELECTRONICS, 2017, 10176
  • [46] Electro-optic detection of terahertz radiation
    Gallot, G
    Grischkowsky, D
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1999, 16 (08) : 1204 - 1212
  • [47] High-Resolution, High-Sensitivity Time-Stretch Spectroscopy based on Optical Sampling by Cavity Tuning
    Soundararajan, Srikamal J.
    Duan, Lingze
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [48] Polarization-Sensitive Electro-Optic Sampling of Elliptically-Polarized Terahertz Pulses: Theoretical Description and Experimental Demonstration
    Oguchi, Kenichi
    Okano, Makoto
    Watanabe, Shinichi
    PARTICLES, 2019, 2 (01) : 70 - 89
  • [49] Detection of Terahertz Pulsed Radiation by Using Heterodyne Electro-Optic Sampling Scheme
    Tani, Masahiko
    Bakunov, Michael I.
    Yamamoto, Kohji
    Horita, Kazuki
    Kinoshita, Tetsuya
    Nagase, Tomohiro
    ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2014, 97 (06) : 8 - 15
  • [50] Highly efficient terahertz electro-optic sampling by material optimization at 1060 nm
    Pradarutti, B.
    Matthaeus, G.
    Riehemann, S.
    Notni, G.
    Nolte, S.
    Tuennermann, A.
    OPTICS COMMUNICATIONS, 2008, 281 (19) : 5031 - 5035