A double commutant theorem for Murray-von Neumann algebras

被引:5
|
作者
Liu, Zhe [1 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
关键词
affiliated operators; unbounded operators; OPERATORS; RINGS;
D O I
10.1073/pnas.1203754109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Murray-von Neumann algebras are algebras of operators affiliated with finite von Neumann algebras. In this article, we study commutativity and affiliation of self-adjoint operators (possibly unbounded). We show that a maximal abelian self-adjoint subalgebra A of the Murray-von Neumann algebra A(f)(R) associated with a finite von Neumann algebra R is the Murray-von Neumann algebra A(f)(A(0)), where A(0) is a maximal abelian self-adjoint subalgebra of R and, in addition, A(0) is A boolean AND R. We also prove that the Murray-von Neumann algebra A(f)(C) with C the center of R is the center of the Murray-von Neumann algebra A(f)(R). Von Neumann's celebrated double commutant theorem characterizes von Neumann algebras R as those for which R '' = R, where R', the commutant of R, is the set of bounded operators on the Hilbert space that commute with all operators in R. At the end of this article, we present a double commutant theorem for Murray-von Neumann algebras.
引用
收藏
页码:7676 / 7681
页数:6
相关论文
共 50 条