The reduction of hyperspectral data dimensionality and classification based on recursive subspace fusion

被引:0
|
作者
Wang, Q [1 ]
Zhang, Y [1 ]
Li, S [1 ]
Shen, Y [1 ]
机构
[1] Harbin Inst Technol, Harbin 150001, Peoples R China
来源
CHINESE JOURNAL OF ELECTRONICS | 2002年 / 11卷 / 01期
关键词
hyperspectral image; wavelet-based image fusion; multisensor system; correlation information entropy;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new method called recursive subspace fusion for the reduction of hyperspectral data dimensionality and classification is proposed in this paper. The new method includes three steps. First, the correlation information entropy is calculated from different correlated bands, and based on which the whole data space is divided into subspaces. At the second step, each subspace is fused into an image by the wavelet-based fusion method. Then the fused images and remained bands are considered as a whole space and we process it recursively as in above steps, until some given condition is satisfied. Lastly, the space with reduced data dimensionality is classified by using the Maximum Likelihood Classifier. The computer simulations are conducted on the AVIRIS data for the new method and the classical PCA as well as current SPCT method. The dimensionality is reduced from 100 to 5 bands. The experimental results show that the proposed method not only reduces much more data dimensionality of the hyperspectral images, but also gets higher classification accuracy 95.20%, compared with PCA 87.3% and with SPCT 95.0%.
引用
收藏
页码:12 / 15
页数:4
相关论文
共 50 条
  • [21] Dimensionality reduction of hyperspectral images based on subspace combination clustering and adaptive band selection
    College of Geomatics, Xi'An University of Science and Technology, Shaanxi, Xi'an
    710054, China
    Proc SPIE Int Soc Opt Eng,
  • [22] ISOMAP-BASED SUBSPACE ANALYSIS FOR THE CLASSIFICATION OF HYPERSPECTRAL DATA
    Ding, Ling
    Tang, Ping
    Li, Hongyi
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 429 - 432
  • [23] Supervised and Unsupervised Clustering Based Dimensionality Reduction of Hyperspectral Data
    Beirami, B. A.
    Mokhtarzade, M.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2021, 34 (06): : 1407 - 1412
  • [24] Dimensionality reduction for hyperspectral image classification based on multiview graphs ensemble
    Chen, Puhua
    Jiao, Licheng
    Liu, Fang
    Zhao, Jiaqi
    Zhao, Zhiqiang
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [25] Fireworks Algorithm-Based Dimensionality Reduction for Hyperspectral Imagery Classification
    Cui Y.
    Song G.-J.
    Chen L.-W.
    Liu S.-B.
    Wang L.-G.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2017, 45 (03): : 20 - 28
  • [26] The Impact of the PCA Dimensionality Reduction for CNN based Hyperspectral Image Classification
    Kwak, Taehong
    Song, Ahram
    Kim, Yongil
    KOREAN JOURNAL OF REMOTE SENSING, 2019, 35 (06) : 959 - 971
  • [27] Dimensionality reduction and classification for hyperspectral image based on robust supervised ISOMAP
    Ding, Shengfeng
    Keal, Colin Arthur
    Zhao, Lizhou
    Yu, Dan
    JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING, 2022, 39 (01) : 19 - 29
  • [28] DISCRIMINATIVE GRAPH-BASED DIMENSIONALITY REDUCTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Gu, Yanfeng
    Wang, Qingwang
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [29] INVESTIGATION OF THE IMPACT OF DIMENSIONALITY REDUCTION AND FEATURE SELECTION ON THE CLASSIFICATION OF HYPERSPECTRAL ENMAP DATA
    Keller, S.
    Braun, A. C.
    Hinz, S.
    Weinmann, M.
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [30] A random subspace method with automatic dimensionality selection for hyperspectral image classification
    Kuo, BC
    Hsieh, YC
    Liu, HC
    Chao, RM
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 168 - 171