Synchronization of two Lorenz systems using active control

被引:283
|
作者
Bai, EW
Lonngren, KE
机构
[1] Dept. of Elec. and Comp. Engineering, University of Iowa, Iowa City
关键词
D O I
10.1016/S0960-0779(96)00060-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using techniques from active control theory, we demonstrate that a coupled Lorenz system can be synchronized. The synchronization is verified using the Simulink feature in MATLAB. Copyright (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:51 / 58
页数:8
相关论文
共 50 条
  • [11] Impulsive Control and Synchronization of Complex Lorenz Systems
    Aly, Shaban
    Al-Qahtani, Ali
    Khenous, Houari B.
    Mahmoud, Gamal M.
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [12] Impulsive control for the stabilization and synchronization of Lorenz systems
    Sun, JT
    Zhang, YP
    Wu, QD
    PHYSICS LETTERS A, 2002, 298 (2-3) : 153 - 160
  • [13] Impulsive control and synchronization of the Lorenz systems family
    Wu, Xiaoqun
    Lu, Jun-an
    Tse, Chi K.
    Wang, Jinjun
    Liu, Jie
    CHAOS SOLITONS & FRACTALS, 2007, 31 (03) : 631 - 638
  • [14] Impulsive control for the stabilization and synchronization of Lorenz systems
    Xie, WX
    Wen, CY
    Li, ZG
    PHYSICS LETTERS A, 2000, 275 (1-2) : 67 - 72
  • [15] Synchronization between two chaotic systems with different order by using active control
    Ho, MC
    Hung, YC
    Jiang, IM
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2005, 6 (03) : 249 - 254
  • [16] Synchronization of two chaotic four-dimensional systems using active control
    Lei, Youming
    Xu, Wei
    Xie, Wenxian
    CHAOS SOLITONS & FRACTALS, 2007, 32 (05) : 1823 - 1829
  • [17] Chaos synchronization between two different chaotic systems using active control
    Yassen, MT
    CHAOS SOLITONS & FRACTALS, 2005, 23 (01) : 131 - 140
  • [18] Phase and anti-phase synchronization of two chaotic systems by using active control
    Ho, MC
    Hung, YC
    Chou, CH
    PHYSICS LETTERS A, 2002, 296 (01) : 43 - 48
  • [19] Adaptive synchronization of fractional Lorenz systems using a reduced number of control signals and parameters
    Aguila-Camacho, Norelys
    Duarte-Merrnoud, Manuel A.
    Delgado-Aguilera, Efredy
    CHAOS SOLITONS & FRACTALS, 2016, 87 : 1 - 11
  • [20] Simple robust technique using time delay estimation for the control and synchronization of Lorenz systems
    Jin, Maolin
    Chang, Pyung Hun
    CHAOS SOLITONS & FRACTALS, 2009, 41 (05) : 2672 - 2680