FEYNMAN PATH FORMULA FOR THE TIME FRACTIONAL SCHRODINGER EQUATION

被引:2
|
作者
Emamirad, Hassan [1 ]
Rougirel, Arnaud [1 ]
机构
[1] Univ Poitiers, Lab Math, Teleport 2,BP 179, F-86960 Chassneuil Du Poitou, France
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2020年 / 13卷 / 12期
关键词
Feynman path formula; time fractional in the sense of Caputo; Mittag-Leffler function; Wright function;
D O I
10.3934/dcdss.2020246
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define E-alpha(t(alpha)A), where A is the generator of an uniformly bounded (C-0) semigroup and E-alpha(z) the Mittag-Leffler function. Since the mapping t bar right arrow E-alpha(t(alpha)A) has not the semigroup property, we cannot use the Trotter formula for representing the Feynman operator calculus. Thus for the Hamiltonian H-alpha = -h(alpha)2/2m Delta + V(x), we express E-alpha(t(alpha)H(alpha)) by subordination principle of the Feynman path integral and we retrieve the corresponding Green function.
引用
收藏
页码:3391 / 3400
页数:10
相关论文
共 50 条
  • [41] On the space-time fractional Schrodinger equation with time independent potentials
    Baqer, Saleh
    Boyadjiev, Lyubomir
    PANORAMA OF MATHEMATICS: PURE AND APPLIED, 2016, 658 : 81 - 90
  • [42] Fractional optical solitons of the space-time fractional nonlinear Schrodinger equation
    Wu, Gang-Zhou
    Yu, Li-Jun
    Wang, Yue-Yue
    OPTIK, 2020, 207
  • [43] THE FEYNMAN PATH INTEGRAL FOR THE DIRAC EQUATION
    RIAZANOV, GV
    SOVIET PHYSICS JETP-USSR, 1958, 6 (06): : 1107 - 1113
  • [44] THE FRACTIONAL COMPLEX TRANSFORM: A NOVEL APPROACH TO THE TIME-FRACTIONAL SCHRoDINGER EQUATION
    Ain, Qura Tul
    He, Ji-Huan
    Anjum, Naveed
    Ali, Muhammad
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)
  • [45] Derivation of the Schrodinger equation from the Hamilton-Jacobi equation in Feynman's path integral formulation of quantum mechanics
    Field, J. H.
    EUROPEAN JOURNAL OF PHYSICS, 2011, 32 (01) : 63 - 87
  • [46] Feynman formula for Schrodinger-type equations with time- and space-dependent coefficients
    Plyashechnik, A. S.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2012, 19 (03) : 340 - 359
  • [47] Fractional Schrodinger equation; solvability and connection with classical Schrodinger equation
    Bezerra, Flank D. M.
    Carvalho, Alexandre N.
    Dlotko, Tomasz
    Nascimento, Marcelo J. D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (01) : 336 - 360
  • [48] Fractional time-dependent Schrodinger equation on the Heisenberg group
    Urban, Roman
    Zienkiewicz, Jacek
    MATHEMATISCHE ZEITSCHRIFT, 2008, 260 (04) : 931 - 948
  • [49] The Numerical Computation of the Time Fractional Schrodinger Equation on an Unbounded Domain
    Li, Dan
    Zhang, Jiwei
    Zhang, Zhimin
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2018, 18 (01) : 77 - 94
  • [50] A Time-Fractional Schrodinger Equation with Singular Potentials on the Boundary
    Alazman, Ibtehal
    Jleli, Mohamed
    Samet, Bessem
    FRACTAL AND FRACTIONAL, 2023, 7 (06)