Learning Embedding for Knowledge Graph Completion with Hypernetwork

被引:4
|
作者
Le, Thanh [1 ,2 ]
Nguyen, Duy [1 ,2 ]
Le, Bac [1 ,2 ]
机构
[1] Univ Sci, Fac Informat Technol, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
关键词
Link prediction; Knowledge graph embedding; Convolutional neural network;
D O I
10.1007/978-3-030-88081-1_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Link prediction in Knowledge Graph, also called knowledge completion, is a significant problem in graph mining and has many applications for large companies. The more accurate the link prediction results will bring satisfaction, reduce and avoid risks, and commercial benefits. Almost all state-of-the-art models focus on the deep learning approach, especially using convolutional neural networks (CNN). By analysing the strengths and weaknesses of the CNN based models, we proposed a better model to improve the performance of the link prediction task. Specifically, we apply a CNN with specific filters generated through the Hypernetwork architecture. Moreover, we increase the depth of the model more than baseline models to help learn more helpful information. Experimental results show that the proposed model gets better results when compared to CNN-base models.
引用
收藏
页码:16 / 28
页数:13
相关论文
共 50 条
  • [41] Spatiotemporal knowledge graph completion via diachronic and transregional word embedding
    Xu, Xiaobei
    Jia, Wei
    Yan, Li
    Lu, Xiaoping
    Wang, Chao
    Ma, Zongmin
    INFORMATION SCIENCES, 2024, 667
  • [42] Cluster Robust Inference for Embedding-Based Knowledge Graph Completion
    Schramm, Simon
    Niklas, Ulrich
    Schmid, Ute
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 284 - 299
  • [43] A deep embedding model for knowledge graph completion based on attention mechanism
    Huang, Jin
    Zhang, TingHua
    Zhu, Jia
    Yu, Weihao
    Tang, Yong
    He, Yang
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (15): : 9751 - 9760
  • [44] A contrastive knowledge graph embedding model with hierarchical attention and dynamic completion
    Shang, Bin
    Zhao, Yinliang
    Liu, Jun
    Liu, Yifan
    Wang, Chenxin
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20): : 15005 - 15018
  • [45] Knowledge graph embedding and completion based on entity community and local importance
    Xu-Hua Yang
    Gang-Feng Ma
    Xin Jin
    Hai-Xia Long
    Jie Xiao
    Lei Ye
    Applied Intelligence, 2023, 53 : 22132 - 22142
  • [46] A deep embedding model for knowledge graph completion based on attention mechanism
    Jin Huang
    TingHua Zhang
    Jia Zhu
    Weihao Yu
    Yong Tang
    Yang He
    Neural Computing and Applications, 2021, 33 : 9751 - 9760
  • [47] Temporal Knowledge Graph Completion Based on Time Series Gaussian Embedding
    Xu, Chenjin
    Nayyeri, Mojtaba
    Alkhoury, Fouad
    Yazdi, Hamed
    Lehmann, Jens
    SEMANTIC WEB - ISWC 2020, PT I, 2020, 12506 : 654 - 671
  • [48] A semantic guide-based embedding method for knowledge graph completion
    Zhang, Jinglin
    Shen, Bo
    Wang, Tao
    Zhong, Yu
    EXPERT SYSTEMS, 2024, 41 (08)
  • [49] A unified embedding-based relation completion framework for knowledge graph
    Zhong, Hao
    Li, Weisheng
    Zhang, Qi
    Lin, Ronghua
    Tang, Yong
    KNOWLEDGE-BASED SYSTEMS, 2024, 289
  • [50] A contrastive knowledge graph embedding model with hierarchical attention and dynamic completion
    Bin Shang
    Yinliang Zhao
    Jun Liu
    Yifan Liu
    Chenxin Wang
    Neural Computing and Applications, 2023, 35 : 15005 - 15018