Learning Embedding for Knowledge Graph Completion with Hypernetwork

被引:4
|
作者
Le, Thanh [1 ,2 ]
Nguyen, Duy [1 ,2 ]
Le, Bac [1 ,2 ]
机构
[1] Univ Sci, Fac Informat Technol, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
关键词
Link prediction; Knowledge graph embedding; Convolutional neural network;
D O I
10.1007/978-3-030-88081-1_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Link prediction in Knowledge Graph, also called knowledge completion, is a significant problem in graph mining and has many applications for large companies. The more accurate the link prediction results will bring satisfaction, reduce and avoid risks, and commercial benefits. Almost all state-of-the-art models focus on the deep learning approach, especially using convolutional neural networks (CNN). By analysing the strengths and weaknesses of the CNN based models, we proposed a better model to improve the performance of the link prediction task. Specifically, we apply a CNN with specific filters generated through the Hypernetwork architecture. Moreover, we increase the depth of the model more than baseline models to help learn more helpful information. Experimental results show that the proposed model gets better results when compared to CNN-base models.
引用
收藏
页码:16 / 28
页数:13
相关论文
共 50 条
  • [1] Graph2Seq: Fusion Embedding Learning for Knowledge Graph Completion
    Li, Weidong
    Zhang, Xinyu
    Wang, Yaqian
    Yan, Zhihuan
    Peng, Rong
    IEEE ACCESS, 2019, 7 : 157960 - 157971
  • [2] Federated knowledge graph completion via embedding-contrastive learning
    Chen, Mingyang
    Zhang, Wen
    Yuan, Zonggang
    Jia, Yantao
    Chen, Huajun
    KNOWLEDGE-BASED SYSTEMS, 2022, 252
  • [3] Research on Knowledge Graph Completion Based upon Knowledge Graph Embedding
    Feng, Tuoyu
    Wu, Yongsheng
    Li, Libing
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 1335 - 1342
  • [4] Enhancing Knowledge Graph Completion By Embedding Correlations
    Pal, Soumajit
    Urbani, Jacopo
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 2247 - 2250
  • [5] ProjE: Embedding Projection for Knowledge Graph Completion
    Shi, Baoxu
    Weninger, Tim
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1236 - 1242
  • [6] Diachronic Embedding for Temporal Knowledge Graph Completion
    Goel, Rishab
    Kazemi, Seyed Mehran
    Brubaker, Marcus
    Poupart, Pascal
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 3988 - 3995
  • [7] Correlation embedding learning with dynamic semantic enhanced sampling for knowledge graph completion
    Haojie Nie
    Xiangguo Zhao
    Xin Bi
    Yuliang Ma
    George Y. Yuan
    World Wide Web, 2023, 26 : 2887 - 2907
  • [8] Correlation embedding learning with dynamic semantic enhanced sampling for knowledge graph completion
    Nie, Haojie
    Zhao, Xiangguo
    Bi, Xin
    Ma, Yuliang
    Yuan, George Y.
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (05): : 2887 - 2907
  • [9] A type-augmented knowledge graph embedding framework for knowledge graph completion
    He, Peng
    Zhou, Gang
    Yao, Yao
    Wang, Zhe
    Yang, Hao
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [10] A type-augmented knowledge graph embedding framework for knowledge graph completion
    Peng He
    Gang Zhou
    Yao Yao
    Zhe Wang
    Hao Yang
    Scientific Reports, 13 (1)