Localized surface plasmon resonance (LSPR) study of DNA hybridization at single nanoparticle transducers

被引:41
|
作者
Schneider, T. [1 ]
Jahr, N. [1 ]
Jatschka, J. [1 ]
Csaki, A. [1 ]
Stranik, O. [1 ]
Fritzsche, W. [1 ]
机构
[1] Inst Photon Technol IPHT, Dept Nano Biophoton, D-07702 Jena, Germany
关键词
LSPR; Single nanoparticle spectroscopy; DNA hybridization; GOLD; TRIS(2-CARBOXYETHYL)PHOSPHINE; FLUORESCENCE; BIOSENSOR; LIGHT;
D O I
10.1007/s11051-013-1531-7
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The effect of DNA-DNA interaction on the localized surface plasmon resonance of single 80 nm gold nanoparticles is studied. Therefore, both the attachment of the capture DNA strands at the particle surface and the sequence-specific DNA binding (hybridization) of analyte DNA to the immobilized capture DNA is subject of investigations. The influence of substrate attachment chemistry, the packing density of DNA as controlled by an assisting layer of smaller molecules, and the distance as increased by a linker on the LSPR efficiency is investigated. The resulting changes in signal can be related to a higher hybridization efficiency of the analyte DNA to the immobilized capture DNA. The subsequent attachment of additional DNA strands to this system is studied, which allows for a multiple step detection of binding and an elucidation of the resulting resonance shifts. The detection limit was determined for the utilized DNA system by incubation with various concentration of analyte DNA. Although the method allows for a marker-free detection, we show that additional markers such as 20 nm gold particle labels increase the signal and thereby the sensitivity significantly. The study of resonance shift for various DNA lengths revealed that the resonance shift per base is stronger for shorter DNA molecules (20 bases) as compared to longer ones (46 bases).
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Silica-coated gold nanorods biofunctionalization for localized surface plasmon resonance (LSPR) biosensing
    Pellas, Vincent
    Sallem, Fadoua
    Blanchard, Juliette
    Miche, Antoine
    Concheso, Sara Martinez
    Methivier, Christophe
    Salmain, Michele
    Boujday, Souhir
    TALANTA, 2023, 255
  • [42] Strongly confined localized surface plasmon resonance (LSPR) bands of Pt, AgPt, AgAuPt nanoparticles
    Mao Sui
    Sundar Kunwar
    Puran Pandey
    Jihoon Lee
    Scientific Reports, 9
  • [43] Influence of aspect ratio and surrounding medium on Localized Surface Plasmon Resonance (LSPR) of gold nanorod
    Verma, S. S.
    Sekhon, Jagmeet Singh
    JOURNAL OF OPTICS-INDIA, 2012, 41 (02): : 89 - 93
  • [44] Strongly confined localized surface plasmon resonance (LSPR) bands of Pt, AgPt, AgAuPt nanoparticles
    Sui, Mao
    Kunwar, Sundar
    Pandey, Puran
    Lee, Jihoon
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [45] Numerical Investigation of Localized Surface Plasmon Resonance (LSPR) based Sensor for Glucose Level Monitoring
    Santavanond, Kawintida
    Viphavakit, Charusluk
    Patchoo, Wisarn
    El-Khozondar, Hala
    Mohammed, Waleed
    2021 SECOND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION, CONTROL, ARTIFICIAL INTELLIGENCE, AND ROBOTICS (ICA-SYMP), 2021, : 31 - 34
  • [46] Detection of SO2 at the ppm Level with Localized Surface Plasmon Resonance (LSPR) Sensing
    Takimoto, Yuki
    Monkawa, Akira
    Nagata, Kohki
    Kobayashi, Masahiro
    Kinoshita, Mariko
    Gessei, Tomoko
    Mori, Toshiya
    Kagi, Hiroyuki
    PLASMONICS, 2020, 15 (03) : 805 - 811
  • [47] A regeneratable, label-free, localized surface plasmon resonance (LSPR) aptasensor for the detection of ochratoxin A
    Park, Jin-Ho
    Byun, Ju-Young
    Mun, Hyoyoung
    Shim, Won-Bo
    Shin, Yong-Beom
    Li, Taihua
    Kim, Min-Gon
    BIOSENSORS & BIOELECTRONICS, 2014, 59 : 321 - 327
  • [48] Detection of Biomolecular Binding Through Enhancement of Localized Surface Plasmon Resonance (LSPR) by Gold Nanoparticles
    Kim, Hyung Min
    Jin, Seung Min
    Lee, Seok Kee
    Kim, Min-Gon
    Shin, Yong-Beom
    SENSORS, 2009, 9 (04): : 2334 - 2344
  • [49] Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol
    Kreuzer, Mark P.
    Quidant, Romain
    Salvador, J. -Pablo
    Marco, M. -Pilar
    Badenes, Goncal
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2008, 391 (05) : 1813 - 1820
  • [50] Detection of SO2 at the ppm Level with Localized Surface Plasmon Resonance (LSPR) Sensing
    Yuki Takimoto
    Akira Monkawa
    Kohki Nagata
    Masahiro Kobayashi
    Mariko Kinoshita
    Tomoko Gessei
    Toshiya Mori
    Hiroyuki Kagi
    Plasmonics, 2020, 15 : 805 - 811