DYNAMICS OF DARK-DARK SOLITONS AND BREATHERS IN THE TWO-COMPONENT NONLINEAR SCHRODINGER EQUATIONS COUPLED TO BOUSSINESQ EQUATION

被引:0
|
作者
Chen, Xiang [1 ]
Rao, Jiguang [1 ]
机构
[1] Hubei Univ Sci & Technol, Sch Math & Stat, Xianning 437100, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-component nonlinear Schrodinger equations coupled to Boussinesq equation; Dark-dark solitons; Breathers; KP-hierarchy reduction method; ROGUE WAVES; UPPER-HYBRID; TRANSFORMATIONS; INTEGRABILITY;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
General higher-order dark-dark solitons and breathers in the two-component nonlinear Schrodinger equations coupled to Boussinesq (2NLS-Boussinesq) equation are derived by the bilinear KP-hierarchy reduction method, and are given in terms of determinants. These dark-dark solitons only show elastic collisions and the two dark-dark solitons can form bound states. In contrast to the dark-dark solitons in 2NLS equation, which only admits a stationary bound state, the two dark-dark solitons in the 2NLS-Boussinesq equation possesses more bound sates. The dynamics of breathers are also investigated, and they become the homoclinic orbits under particular parametric restrictions.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Bright-dark solitons and their collisions in mixed N-coupled nonlinear Schrodinger equations
    Vijayajayanthi, M.
    Kanna, T.
    Lakshmanan, M.
    PHYSICAL REVIEW A, 2008, 77 (01)
  • [42] Bright-dark solitons for a set of the general coupled nonlinear Schrodinger equations in a birefringent fiber
    Yuan, Yu-Qiang
    Tian, Bo
    Liu, Lei
    Sun, Yan
    EPL, 2017, 120 (03)
  • [43] Symmetry and asymmetry rogue waves in two-component coupled nonlinear Schrodinger equations
    Li, Zai-Dong
    Huo, Cong-Zhe
    Li, Qiu-Yan
    He, Peng-Bin
    Xu, Tian-Fu
    CHINESE PHYSICS B, 2018, 27 (04)
  • [44] Dark solitons in a two-component Bose-Einstein condensate
    Öhberg, P
    Santos, L
    PHYSICAL REVIEW LETTERS, 2001, 86 (14) : 2918 - 2921
  • [45] Dynamics of the discrete coupled nonlinear Schrodinger-Boussinesq equations
    Yang, Xinbo
    Zhao, Caidi
    Cao, Juan
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (16) : 8508 - 8524
  • [46] MODULATIONAL INSTABILITIES AND DARK SOLITONS IN A GENERALIZED NONLINEAR SCHRODINGER-EQUATION
    KIVSHAR, YS
    ANDERSON, D
    LISAK, M
    PHYSICA SCRIPTA, 1993, 47 (05): : 679 - 681
  • [47] Hamiltonian theory of motion of dark solitons in the theory of nonlinear Schrodinger equation
    Kamchatnov, A. M.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 219 (01) : 567 - 575
  • [48] Degeneracy in bright-dark solitons of the Derivative Nonlinear Schrodinger equation
    Xu, Shuwei
    Wang, Lihong
    Erdelyi, R.
    He, Jingsong
    APPLIED MATHEMATICS LETTERS, 2019, 87 : 64 - 72
  • [49] New bright and dark solitons for quintic nonlinear derivative Schrodinger equation
    Wu, Fengxia
    Dai, Zhengde
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) : 9305 - 9309
  • [50] On vortex and dark solitons in the cubic-quintic nonlinear Schrodinger equation
    Paredes, Angel
    Salgueiro, Jose R.
    Michinel, Humberto
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 437