UNIFORMLY RATIONAL VARIETIES WITH TORUS ACTION

被引:4
|
作者
Liendo, Alvaro [1 ]
Petitjean, Charlie [1 ]
机构
[1] Univ Talca, Inst Matemat & Fis, Casilla 721, Talca, Chile
关键词
PROJECTIVE MODULES;
D O I
10.1007/s00031-017-9451-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A smooth variety is called uniformly rational if every point admits a Zariski open neighborhood isomorphic to a Zariski open subset of the affine space. In this note we show that every smooth and rational affine variety endowed with an algebraic torus action such that the algebraic quotient has dimension 0 or 1 is uniformly rational.
引用
收藏
页码:149 / 153
页数:5
相关论文
共 50 条
  • [31] Rational curves on varieties
    Araujo, C
    Kollár, J
    HIGHER DIMENSIONAL VARIETIES AND RATIONAL POINTS, 2003, 12 : 13 - 68
  • [32] On Rational Knots and Links in the Solid Torus
    Bataineh, Khaled
    Elhamdadi, Mohamed
    Hajij, Mustafa
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (04)
  • [33] Spin geometry of the rational noncommutative torus
    Carotenuto, Alessandro
    Dabrowski, Ludwik
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 144 : 28 - 42
  • [34] UNIFORMLY ELLIPTIC-OPERATORS ON AN INFINITE DIMENSIONAL TORUS
    BENDIKOV, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (07): : 733 - 738
  • [35] Torus Orbifolds, Slice-Maximal Torus Actions, and Rational Ellipticity
    Galaz-Garcia, Fernando
    Kerin, Martin
    Radeschi, Marco
    Wiemeler, Michael
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (18) : 5786 - 5822
  • [36] Uniformly counting rational points on conics
    Sofos, Efthymios
    ACTA ARITHMETICA, 2014, 166 (01) : 1 - 13
  • [37] On the ideals of secant varieties to certain rational varieties
    Catalisano, M. V.
    Geramita, A. V.
    Gimigliano, A.
    JOURNAL OF ALGEBRA, 2008, 319 (05) : 1913 - 1931
  • [38] Nearly rational varieties, their points and their rational degenerations
    Colliot-Thelene, Jean-Louis
    ARITHMETIC GEOMETRY, 2011, 2009 : 1 - 44
  • [39] THE GEOMETRY AND TOPOLOGY OF QUOTIENT VARIETIES OF TORUS ACTIONS
    HU, Y
    DUKE MATHEMATICAL JOURNAL, 1992, 68 (01) : 151 - 184
  • [40] On abelian points of varieties intersecting subgroups in a torus
    Mello, Jorge
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2022, 34 (01): : 309 - 322