Front-end integration effects on gate oxide quality

被引:0
|
作者
Lin, F
Ajuria, SA
Ilderem, V
Masquelier, MP
机构
关键词
D O I
10.1557/PROC-428-361
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the impact of several front-end processing steps (up to gate oxidation) on gate oxide integrity (GOI) is evaluated. In PBL isolation processing, the use of as-deposited amorphous silicon (a-Si), subsequently annealed during nitride deposition, results in better structural and electrical properties compared to as-deposited polysilicon or as-deposited a-Si with an extra anneal step prior to nitride deposition. Thicker or dual sacrificial schemes exhibit improved gate oxide low voltage breakdown and charge-to-breakdown. Dilute RCA chemistries during pre-gate cleaning produce equal or better surfaces for gate oxidation than the conventional non-dilute RCA with less chemical usage. As gate oxides are scaled below 100 Angstrom, lowering gate oxidation temperature is proven to result in far better gate oxide quality than maintaining process temperatures at or above 900 degrees C and diluting oxygen in either argon or nitrogen.
引用
收藏
页码:361 / 366
页数:6
相关论文
共 50 条
  • [41] RF Front-End for SEAMS
    Kulkarni, Atharva
    Pingale, Sunil
    Gharpure, Damayanti
    Ananthakrishnan, Subramaniam
    2019 URSI ASIA-PACIFIC RADIO SCIENCE CONFERENCE (AP-RASC), 2019,
  • [42] Front-end process simulation
    Rafferty, CS
    SOLID-STATE ELECTRONICS, 2000, 44 (05) : 863 - 868
  • [43] The RatCAP Front-End ASIC
    Pratte, Jean-Francois
    Junnarkar, Sachin
    Deptuch, Grzegorz
    Fried, Jack
    O'Connor, Paul
    Radeka, Veljko
    Vaska, Paul
    Woody, Craig
    Schlyer, David
    Stoll, Sean
    Maramraju, Sri Harsha
    Krishnamoorthy, Srilalan
    Lecomte, Roger
    Fontaine, Rejean
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2008, 55 (05) : 2727 - 2735
  • [44] Multi Front-End Engineering
    Botterweck, Goetz
    MODEL-DRIVEN DEVELOPMENT OF ADVANCED USER INTERFACES, 2011, 340 : 27 - 42
  • [45] CAPACITIVELY COUPLED FRONT-END
    YOUNG, DC
    BRIGNELL, JE
    SENSORS AND ACTUATORS A-PHYSICAL, 1995, 47 (1-3) : 534 - 536
  • [46] ADDING VALUE AT THE FRONT-END
    BLACKMORE, L
    CONTROL AND INSTRUMENTATION, 1995, 27 (09): : 63 - 63
  • [47] LHC front-end electronics
    Hall, G
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2000, 453 (1-2): : 353 - 364
  • [48] Front-end corn germ separation: Process variations and effects on downstream products recovery and quality
    Shad, Zeinab Mohammadi
    Venkitasamy, Chandrasekar
    Lamsal, Buddhi
    CEREAL CHEMISTRY, 2021, 98 (02) : 189 - 211
  • [49] ALMA front-end optics
    Carter, M
    Baryshev, A
    Harman, M
    Lazareff, B
    Lamb, J
    Navarro, S
    John, D
    Fontana, AL
    Ediss, GA
    Tham, CY
    Withington, S
    Tercero, F
    Nesti, R
    Tan, GH
    Sekimoto, Y
    Matsunaga, M
    Ogawa, H
    Claude, S
    GROUND-BASED TELESCOPES, PTS 1 AND 2, 2004, 5489 : 1074 - 1084
  • [50] FRONT-END PROGRAMMING ENVIRONMENTS
    ZVEGINTZOV, N
    DATAMATION, 1984, 30 (13): : 80 - &