An improved subspace weighting method using random matrix theory

被引:0
|
作者
Gao, Yu-meng [1 ]
Li, Jiang-hui [2 ]
Bai, Ye-chao [1 ]
Wang, Qiong [1 ]
Zhang, Xing-gan [1 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Peoples R China
[2] Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England
基金
中国国家自然科学基金;
关键词
Direction of arrival; Signal subspace; Random matrix theory; TP319; OF-ARRIVAL ESTIMATION;
D O I
10.1631/FITEE.1900463
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The weighting subspace fitting (WSF) algorithm performs better than the multi-signal classification (MUSIC) algorithm in the case of low signal-to-noise ratio (SNR) and when signals are correlated. In this study, we use the random matrix theory (RMT) to improve WSF. RMT focuses on the asymptotic behavior of eigenvalues and eigenvectors of random matrices with dimensions of matrices increasing at the same rate. The approximative first-order perturbation is applied in WSF when calculating statistics of the eigenvectors of sample covariance. Using the asymptotic results of the norm of the projection from the sample covariance matrix signal subspace onto the real signal in the random matrix theory, the method of calculating WSF is obtained. Numerical results are shown to prove the superiority of RMT in scenarios with few snapshots and a low SNR.
引用
收藏
页码:1302 / 1307
页数:6
相关论文
共 50 条
  • [41] PASSIVE ACOUSTIC MONITORING USING RANDOM MATRIX THEORY
    Menon, Ravi
    Gerstoft, Peter
    Hodgkiss, William S.
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 804 - 807
  • [42] Cooperative spectrum sensing using random matrix theory
    Cardoso, Leonardo S.
    Debbah, Merouane
    Bianchi, Pascal
    Najim, Jamal
    2008 3RD INTERNATIONAL SYMPOSIUM ON WIRELESS PERVASIVE COMPUTING, VOLS 1-2, 2008, : 334 - +
  • [43] Hierarchical Beamforming in CRAN Using Random Matrix Theory
    Boiadjieva, Boriana
    Al-Shatri, Hussein
    Klein, Anja
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2018,
  • [44] Constructing acoustic timefronts using random matrix theory
    Tomsovic, S. (tomsovic@wsu.edu), 1600, Acoustical Society of America (134):
  • [45] Denoising of diffusion MRI using random matrix theory
    Veraart, Jelle
    Novikov, Dmitry S.
    Christiaens, Daan
    Ades-Aron, Benjamin
    Sijbers, Jan
    Fieremans, Els
    NEUROIMAGE, 2016, 142 : 384 - 396
  • [46] RANDOM WALK TERM WEIGHTING FOR IMPROVED TEXT CLASSIFICATION
    Hassan, Samer
    Mihalcea, Rada
    Banea, Carmen
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2007, 1 (04) : 421 - 439
  • [47] Sequential method for speech segmentation based on Random Matrix Theory
    Faraji, Neda
    Ahadi, Seyed Mohammad
    Sheikhzadeh, Hamid
    IET SIGNAL PROCESSING, 2013, 7 (07) : 625 - 633
  • [48] Improved method to extract nucleon helicity distributions using event weighting
    Pretz, J.
    JOURNAL OF INSTRUMENTATION, 2017, 12
  • [49] Method to modify random matrix theory using short-time behavior in chaotic systems
    Smith, A. Matthew
    Kaplan, Lev
    PHYSICAL REVIEW E, 2009, 80 (03):
  • [50] On the Subspace Projected Approximate Matrix method
    Jan H. Brandts
    Ricardo Reis da Silva
    Applications of Mathematics, 2015, 60 : 421 - 452