Basis partitions and Rogers-Ramanujan partitions

被引:3
|
作者
Hirschhorn, MD [1 ]
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
关键词
basis partitions; Rogers-Ramanujan partitions;
D O I
10.1016/S0012-365X(99)00030-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Every partition has, for some d, a Durfee square of side d. Every partition pi with Durfee square of side d gives rise to a 'successive rank vector' r = (r(1), ..., r(d)). Conversely, given a vector r = (r(1), ..., r(d)), there is a unique partition pi(0) of minimal size called the basis partition with r as its successive rank vector. We give a quick derivation of the generating function for b(n, d), the number of basis partitions of n with Durfee square side d, and show that b(n, d) is a weighted sum over all Rogers-Ramanujan partitions of n into d parts. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:241 / 243
页数:3
相关论文
共 50 条
  • [31] On identities of the Rogers-Ramanujan type
    Sills, Andrew V.
    RAMANUJAN JOURNAL, 2006, 11 (03): : 403 - 429
  • [32] Refinements of the Rogers-Ramanujan Identities
    O'Hara, Kathleen
    Stanton, Dennis
    EXPERIMENTAL MATHEMATICS, 2015, 24 (04) : 410 - 418
  • [33] GENERAL ROGERS-RAMANUJAN THEOREM
    ANDREWS, GE
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, (152) : 1 - 86
  • [34] The Rogers-Ramanujan continued fraction
    Berndt, BC
    Chan, HH
    Huang, SS
    Kang, SY
    Sohn, J
    Son, SH
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) : 9 - 24
  • [35] ON IDENTITIES OF ROGERS-RAMANUJAN TYPE
    VERMA, A
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1980, 11 (06): : 770 - 790
  • [36] GENERALIZED ROGERS-RAMANUJAN BIJECTIONS
    BRESSOUD, DM
    ZEILBERGER, D
    ADVANCES IN MATHEMATICS, 1989, 78 (01) : 42 - 75
  • [37] A SHORT ROGERS-RAMANUJAN BIJECTION
    BRESSOUD, DM
    ZEILBERGER, D
    DISCRETE MATHEMATICS, 1982, 38 (2-3) : 313 - 315
  • [38] Rogers-Ramanujan computer searches
    McLaughlin, James
    Sills, Andrew V.
    Zimmer, Peter
    JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (08) : 1068 - 1078
  • [39] Variants of the Rogers-Ramanujan identities
    Garrett, K
    Ismail, MEH
    Stanton, D
    ADVANCES IN APPLIED MATHEMATICS, 1999, 23 (03) : 274 - 299
  • [40] On identities of the Rogers-Ramanujan type
    Andrew V. Sills
    The Ramanujan Journal, 2006, 11 : 403 - 429