Basis partitions and Rogers-Ramanujan partitions

被引:3
|
作者
Hirschhorn, MD [1 ]
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
关键词
basis partitions; Rogers-Ramanujan partitions;
D O I
10.1016/S0012-365X(99)00030-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Every partition has, for some d, a Durfee square of side d. Every partition pi with Durfee square of side d gives rise to a 'successive rank vector' r = (r(1), ..., r(d)). Conversely, given a vector r = (r(1), ..., r(d)), there is a unique partition pi(0) of minimal size called the basis partition with r as its successive rank vector. We give a quick derivation of the generating function for b(n, d), the number of basis partitions of n with Durfee square side d, and show that b(n, d) is a weighted sum over all Rogers-Ramanujan partitions of n into d parts. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:241 / 243
页数:3
相关论文
共 50 条
  • [1] Rogers-Ramanujan partitions
    Steelman, JH
    AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (01): : 86 - 86
  • [2] Weighted Rogers-Ramanujan partitions and Dyson crank
    Uncu, Ali Kemal
    RAMANUJAN JOURNAL, 2018, 46 (02): : 579 - 591
  • [3] Neighborly partitions and the numerators of Rogers-Ramanujan identities
    Mohsen, Zahraa
    Mourtada, Hussein
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (04) : 859 - 872
  • [4] Rogers-Ramanujan subpartitions and their connections to other partitions
    Kolitsch, Louis W.
    RAMANUJAN JOURNAL, 2008, 16 (02): : 163 - 167
  • [5] ROGERS-RAMANUJAN IDENTITIES FOR PARTITIONS WITH N COPIES OF N
    AGARWAL, AK
    ANDREWS, GE
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1987, 45 (01) : 40 - 49
  • [6] ROGERS-RAMANUJAN IDENTITIES FOR N-COLOR PARTITIONS
    AGARWAL, AK
    JOURNAL OF NUMBER THEORY, 1988, 28 (03) : 299 - 305
  • [7] A NEW PROPERTY OF PARTITIONS WITH APPLICATIONS TO ROGERS-RAMANUJAN IDENTITIES
    ANDREWS, GE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 156 - &
  • [8] Formulas for the number of partitions related to the Rogers-Ramanujan identities
    Alegri, Mateus
    Santos, Wagner Ferreira
    D'Almeida Vilamiu, Raphael Gustavo
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (06): : 1845 - 1854
  • [9] Modular relations for the Rogers-Ramanujan functions with applications to partitions
    Bulkhali, Nasser Abdo Saeed
    Dasappa, Ranganatha
    RAMANUJAN JOURNAL, 2021, 56 (01): : 121 - 139
  • [10] On multi-color partitions and the generalized Rogers-Ramanujan identities
    Jing, NH
    Misra, KC
    Savage, CD
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) : 533 - 548