Making EGO and CMA-ES Complementary for Global Optimization

被引:10
|
作者
Mohammadi, Hossein [1 ,2 ]
Le Riche, Rodolphe [1 ,2 ]
Touboul, Eric [1 ,2 ]
机构
[1] Ecole Natl Super Mines, F-42023 St Etienne, France
[2] CNRS LIMOS, UMR 5168, St Etienne, France
关键词
Continuous global optimization; CMA-ES; EGO; EVOLUTION STRATEGIES;
D O I
10.1007/978-3-319-19084-6_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The global optimization of expensive-to-calculate continuous functions is of great practical importance in engineering. Among the proposed algorithms for solving such problems, Efficient Global Optimization (EGO) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) are regarded as two state-of-the-art unconstrained continuous optimization algorithms. Their underlying principles and performances are different, yet complementary: EGO fills the design space in an order controlled by a Gaussian process (GP) conditioned by the objective function while CMA-ES learns and samples multi-normal laws in the space of design variables. This paper proposes a new algorithm, called EGO-CMA, which combines EGO and CMA-ES. In EGO-CMA, the EGO search is interrupted early and followed by a CMA-ES search whose starting point, initial step size and covariance matrix are calculated from the already sampled points and the associated conditional GP. EGO-CMA improves the performance of both EGO and CMA-ES in our 2 to 10 dimensional experiments.
引用
收藏
页码:287 / 292
页数:6
相关论文
共 50 条
  • [41] Topology Optimization of Plasmonic Device Using Function Expansion Method and CMA-ES
    Tsuji, Y.
    Morimoto, K.
    Iguchi, A.
    Kashiwa, T.
    2022 3RD URSI ATLANTIC AND ASIA PACIFIC RADIO SCIENCE MEETING (AT-AP-RASC), 2022,
  • [42] A CMA-ES with Multiplicative Covariance Matrix Updates
    Krause, Oswin
    Glasmachers, Tobias
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 281 - 288
  • [43] Sequential Sampling for Noisy Optimisation with CMA-ES
    Groves, Matthew
    Branke, Juergen
    GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 1023 - 1030
  • [44] A Robust Optimization Approach using Kriging Metamodels for Robustness Approximation in the CMA-ES
    Kruisselbrink, Johannes W.
    Emmerich, Michael T. M.
    Deutz, Andre H.
    Back, Thomas
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [45] Optimization of NOX emissions of a CRDI DIESEL engine using CMA-ES method
    Berk, Seyfullah
    Alptekin, Ertan
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2024, 25 (12) : 2184 - 2203
  • [46] Reducing the Space-Time Complexity of the CMA-ES
    Knight, James N.
    Lunacek, Monte
    GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2007, : 658 - 665
  • [47] Doubly Trained Evolution Control for the Surrogate CMA-ES
    Pitra, Zbynek
    Bajer, Lukas
    Holena, Martin
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIV, 2016, 9921 : 59 - 68
  • [48] CMA-ES with Surrogate Model Adapting to Fitness Landscape
    Tsukada, Kento
    Hasegawa, Taku
    Mori, Naoki
    Matsumoto, Keinosuke
    INTELLIGENT AND EVOLUTIONARY SYSTEMS, IES 2016, 2017, 8 : 417 - 429
  • [49] Solving Satisfiability in Fuzzy Logics by Mixing CMA-ES
    Brys, Tim
    Drugan, Madalina M.
    Bosman, Peter A. N.
    De Cock, Martine
    Nowe, Ann
    GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2013, : 1125 - 1132
  • [50] Identification of the isotherm function in chromatography using CMA-ES
    Jebalia, M.
    Auger, A.
    Schoenauer, M.
    James, F.
    Postel, M.
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 4289 - +