The last interglacial period on the Pacific Coast of North America: Timing and paleoclimate

被引:0
|
作者
Muhs, DR
Simmons, KR
Kennedy, GL
Rockwell, TK
机构
[1] US Geol Survey, Fed Ctr, Denver, CO 80225 USA
[2] San Diego State Univ, Dept Geol Sci, San Diego, CA 92182 USA
关键词
corals; marine terraces; Mollusca; Pacific Coast; paleoclimate; sea level; uranium-series method; zoogeography;
D O I
10.1130/0016-7606(2002)114<0569:TLIPOT>2.0.CO;2
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
New, high-precision U-series ages of solitary corals (Balanophyllia elegans) coupled with molluscan faunal data from marine terraces on the Pacific Coast of North America yield information about the timing and warmth of the last interglacial sea-level highstand. Balanophyllia elegans takes up U in isotopic equilibrium with seawater during growth and shortly after death. Corals from the second terrace on San Clemente Island (offshore southern California), the third terrace on Punta Banda (on the Pacific Coast of northern Baja California), and the Discovery Point Formation on Isla de Guadalupe (in the Pacific Ocean offshore Baja California) date to the peak of the last interglacial period and have U-series ages ranging from ca. 123 to 114 ka. The first terrace on Punta Banda has corals with ages ranging from ca. 83 to 80 ka, which corresponds to a sea-level highstand formed in the late last interglacial period. U-series analyses of corals from the Cayucos terrace (central California) and the Nestor terrace at Point Loma (southern California) show that these fossils have evidence of open-system history, similar to what has been reported by other workers for the same localities. Nevertheless, a model of continuous, secondary U and Th uptake shows that two ages of corals are likely present at these localities, representing the ca. 105 and ca. 120 ka sea-level highstands reported elsewhere. U-series ages of last interglacial corals from the Pacific Coast overlap with, but are on average younger than the ages of corals from Barbados, the Bahamas, and Hawaii. This age difference is explained by the nature of the geomorphic response to sea-level change: fringing or barrier reefs on lowlatitude coastlines have an accretionary growth style that keeps pace with rising sea level, whether on a tectonically rising or stable coastline. In contrast, midlatitude, high-energy coastlines are sites of platform cutting during the early part of a sea-level high stand and terrace scouring and concomitant sediment and fossil deposition as sea level starts to recede. The youngest ages of corals from the Pacific Coast suggest that sea level was still relatively high at ca. 116 ka, which is not in agreement with other estimates of relatively large global ice volume at that time. Reliably dated, ca. 120 ka marine-terrace deposits on the Pacific Coast have fossil mollusks that indicate water temperatures as warm or warmer than at present. In contrast, ca. 80 ka marine deposits reported here and elsewhere have fossil mollusks indicating cooler-than-modern water temperatures. The presence of both ca. 105 ka and ca. 120 ka corals on the Nestor and Cayucos terraces explains a previously enigmatic mixture of warm-water and cool-water mollusks. At ca. 105 ka, a relatively high sea level with cool waters may have "captured" the terrace formed during the 120 ka sea-level highstand, in areas of low uplift rate. The inference of cooler-than-modern waters off the Pacific Coast of North America at ca. 80 ka and ca. 105 ka, based on marine-terrace faunas, does not agree with estimates of sea-surface temperatures derived from alkenone studies in the Santa Barbara Basin. However, cooler water temperatures at these times are in agreement with paleotemperature estimates from planktonic foraminiferal data for the Santa Barbara Basin. All records, from central California to Baja California, whether from marine terraces or offshore cores, indicate at least seasonably warmer-than-modern waters during the peak of the last interglacial period at ca. 120 ka.
引用
收藏
页码:569 / 592
页数:24
相关论文
共 50 条
  • [31] Osmotic regulation in several crabs of the Pacific Coast of North America
    Jones, LL
    JOURNAL OF CELLULAR AND COMPARATIVE PHYSIOLOGY, 1941, 18 (01): : 79 - 92
  • [32] THE GEOMAGNETIC COAST EFFECT IN THE PACIFIC NORTHWEST OF NORTH-AMERICA
    NEUMANN, GA
    HERMANCE, JF
    GEOPHYSICAL RESEARCH LETTERS, 1985, 12 (08) : 502 - 505
  • [33] The influence of orbital parameters on the North American Monsoon system during the Last Interglacial Period
    Insel, Nadja
    Berkelhammer, Max
    JOURNAL OF QUATERNARY SCIENCE, 2021, 36 (04) : 638 - 648
  • [34] Re-examination of the Ages of the Last Interglacial Marine Terraces and Crustal Movements Since the Last Interglacial Period along the Northern Sanriku Coast Based on Tephrochronology
    Miyazaki, Mayumi
    Ishimura, Daisuke
    JOURNAL OF GEOGRAPHY-CHIGAKU ZASSHI, 2018, 127 (06) : 735 - 757
  • [35] Rapid Reductions in North Atlantic Deep Water During the Peak of the Last Interglacial Period
    Galaasen, Eirik Vinje
    Ninnemann, Ulysses S.
    Irvali, Nil
    Kleiven, Helga F.
    Rosenthal, Yair
    Kissel, Catherine
    Hodell, David A.
    SCIENCE, 2014, 343 (6175) : 1129 - 1132
  • [36] East Asian Monsoon Precipitation and Paleoclimate Record Since the Last Interglacial Period in the Bohai Sea Coastal Zone, China
    Du, Shuhuan
    Li, Baosheng
    Li, Zhiwen
    Chen, Muhong
    Zhang, David Dian
    Xiang, Rong
    Niu, Dongfeng
    Si, Yuejun
    TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES, 2016, 27 (06): : 825 - 836
  • [37] Length of the current interglacial period and interglacial intervals of the last million years
    Dergachev, V. A.
    GEOMAGNETISM AND AERONOMY, 2015, 55 (07) : 945 - 952
  • [38] Length of the current interglacial period and interglacial intervals of the last million years
    V. A. Dergachev
    Geomagnetism and Aeronomy, 2015, 55 : 945 - 952
  • [39] Cenozoic paleoclimate on land in North America
    Retallack, Gregory J.
    JOURNAL OF GEOLOGY, 2007, 115 (03): : 271 - 294
  • [40] THE LAST INTERGLACIAL GLACIAL PERIOD ON SPITSBERGEN, SVALBARD
    MANGERUD, J
    SVENDSEN, JI
    QUATERNARY SCIENCE REVIEWS, 1992, 11 (06) : 633 - 664