A Legendre spectral element method for eigenvalues in hydrodynamic stability

被引:13
|
作者
Hill, A. A. [1 ]
Straughan, B. [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会;
关键词
spectral methods; porous media; sparse matrices; hydrodynamic stability;
D O I
10.1016/j.cam.2005.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Legendre polynomial-based spectral technique is developed to be applicable to solving eigenvalue problems which arise in linear and nonlinear stability questions in porous media, and other areas of Continuum Mechanics. The matrices produced in the corresponding generalised eigenvalue problem are sparse, reducing the computational and storage costs, where the superimposition of boundary conditions is not needed due to the structure of the method. Several eigenvalue problems are solved using both the Legendre polynomial-based and Chebyshev tau techniques. In each example, the Legendre polynomial-based spectral technique converges to the required accuracy utilising less polynomials than the Chebyshev tau method, and with much greater computational efficiency. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:363 / 381
页数:19
相关论文
共 50 条
  • [21] An averaged vector field Legendre spectral element method for the nonlinear Schrodinger equation
    Li, Haochen
    Wang, Yushun
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (06) : 1196 - 1218
  • [22] A new method for the evaluation of the first eigenvalues in the spectral problem of hydrodynamic stability of viscous fluid flow between two rotating cylinders
    Dubrovskii, VV
    Kadchenko, SI
    Kravchenko, VF
    Sadovnichii, VA
    DOKLADY MATHEMATICS, 2001, 64 (03) : 425 - 429
  • [23] Correction of eigenvalues estimated by the Legendre–Gauss Tau method
    Mohamed K. El-Daou
    Suad Sh. Al Enezi
    Mona M. Mekkaoui
    Numerical Algorithms, 2013, 64 : 203 - 220
  • [24] Numerical research on the hydrodynamic stability of Blasius flow with spectral method
    Xie M.-L.
    Xiong H.-B.
    Lin J.-Z.
    J Hydrodyn, 2006, 1 (260-264): : 260 - 264
  • [25] Numerical research on the hydrodynamic stability of Blasius flow with spectral method
    Xie Ming-Liang
    Xiong Hong-Bing
    Lin Jian-Zhong
    PROCEEDINGS OF THE CONFERENCE OF GLOBAL CHINESE SCHOLARS ON HYDRODYNAMICS, 2006, : 265 - 269
  • [26] NUMERICAL RESEARCH ON THE HYDRODYNAMIC STABILITY OF BLASIUS FLOW WITH SPECTRAL METHOD
    Xie Ming-Liang
    Xiong Hong-Bing
    Lin Jian-Zhong
    JOURNAL OF HYDRODYNAMICS, 2006, 18 (03) : 265 - 269
  • [27] Legendre-spectral element method for flow and heat transfer about an accelerating droplet
    Nguyen H.D.
    Paik S.
    Douglass R.W.
    Journal of Scientific Computing, 1997, 12 (1) : 75 - 97
  • [28] A Legendre-spectral element method for flow and heat transfer about an accelerating droplet
    Oh, SY
    Nguyen, HD
    Paik, S
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2000, 33 (01) : 59 - 79
  • [29] An efficient Legendre-Galerkin spectral element method for the steady flows in rectangular cavities
    Zhang, Jun
    Jiao, Jianjun
    Lin, Fubiao
    Li, Wulan
    Sun, Tao
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (09) : 1806 - 1818
  • [30] Modal spectral element method with modified Legendre polynomials to analyze binary crossed gratings
    Granet, Gerard
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2023, 40 (04) : 652 - 660