A Legendre spectral element method for eigenvalues in hydrodynamic stability

被引:13
|
作者
Hill, A. A. [1 ]
Straughan, B. [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会;
关键词
spectral methods; porous media; sparse matrices; hydrodynamic stability;
D O I
10.1016/j.cam.2005.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Legendre polynomial-based spectral technique is developed to be applicable to solving eigenvalue problems which arise in linear and nonlinear stability questions in porous media, and other areas of Continuum Mechanics. The matrices produced in the corresponding generalised eigenvalue problem are sparse, reducing the computational and storage costs, where the superimposition of boundary conditions is not needed due to the structure of the method. Several eigenvalue problems are solved using both the Legendre polynomial-based and Chebyshev tau techniques. In each example, the Legendre polynomial-based spectral technique converges to the required accuracy utilising less polynomials than the Chebyshev tau method, and with much greater computational efficiency. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:363 / 381
页数:19
相关论文
共 50 条
  • [1] High order spectral element method and application in hydrodynamic stability
    School of Engineering Science, University of Science and Technology of China, Hefei 230027, China
    Jisuan Wuli, 2007, 1 (7-12):
  • [2] A LEGENDRE SPECTRAL ELEMENT METHOD FOR THE STEFAN PROBLEM
    RONQUIST, EM
    PATERA, AT
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1987, 24 (12) : 2273 - 2299
  • [3] Legendre spectral method and error estimates for Helmholtz transmission eigenvalues in a cylinder
    Tan, Ting
    Cao, Waixiang
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [4] THE TRIANGULAR SPECTRAL ELEMENT METHOD FOR STOKES EIGENVALUES
    Shan, Weikun
    Li, Huiyuan
    MATHEMATICS OF COMPUTATION, 2017, 86 (308) : 2579 - 2611
  • [5] Legendre spectral element method with nearly incompressible materials
    Peet, Y. T.
    Fischer, P. F.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2014, 44 : 91 - 103
  • [6] Hydrodynamic stability, the Chebyshev tau method and spurious eigenvalues
    D. Bourne
    Continuum Mechanics and Thermodynamics, 2003, 15 : 571 - 579
  • [7] Hydrodynamic stability, the Chebyshev tau method and spurious eigenvalues
    Bourne, D
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2003, 15 (06) : 571 - 579
  • [8] A Fourier-Legendre spectral element method in polar coordinates
    Qiu, Zhouhua
    Zeng, Zhong
    Mei, Huan
    Li, Liang
    Yao, Liping
    Zhang, Liangqi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (02) : 666 - 675
  • [9] HYDRODYNAMIC STABILITY WITHOUT EIGENVALUES
    TREFETHEN, LN
    TREFETHEN, AE
    REDDY, SC
    DRISCOLL, TA
    SCIENCE, 1993, 261 (5121) : 578 - 584
  • [10] Hydrodynamic stability without eigenvalues
    Trefethen, Lloyd N., 1600, (261):