GPU-accelerated adaptive particle splitting and merging in SPH

被引:53
|
作者
Xiong, Qingang [1 ,2 ]
Li, Bo [2 ,3 ]
Xu, Ji [2 ,3 ]
机构
[1] Heidelberg Univ, Zentrum Astron Univ Heidelberg ZAH, ARI, D-69120 Heidelberg, Germany
[2] Chinese Acad Sci, IPE, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
关键词
Smoothed particle hydrodynamics; Adaptivity; Particle splitting and merging; GPU; Multi-GPU parallelism; LATTICE BOLTZMANN METHOD; GAS-SOLID FLOWS; PROCESSING UNITS; HYDRODYNAMICS; REFINEMENT; SIMULATIONS; DYNAMICS; CODE; DNS;
D O I
10.1016/j.cpc.2013.02.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Graphical processing unit (GPU) implementation of adaptive particle splitting and merging (APS) in the framework of smoothed particle hydrodynamics (SPH) is presented. Particle splitting and merging process are carried out based on a prescribed criterion. Multiple time stepping technology is used to reduce computational cost further. Detailed implementations on both single- and multi-GPU are discussed. A benchmark test that is a flow past fixed periodic circles is simulated to investigate the accuracy and speed of the algorithm. Comparable precision with uniformly fine simulation is achieved by APS, whereas computational demand is reduced considerably. Satisfactory speedup and acceptable scalability are obtained, demonstrating that GPU-accelerated APS is a promising tool to speed up large-scale particle-based simulations. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1701 / 1707
页数:7
相关论文
共 50 条
  • [41] GPU-Accelerated Static Timing Analysis
    Guo, Zizheng
    Huang, Tsung-Wei
    Lin, Yibo
    2020 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED-DESIGN (ICCAD), 2020,
  • [42] GPU-Accelerated Flexible Molecular Docking
    Fan, Mengran
    Wang, Jian
    Jiang, Huaipan
    Feng, Yilin
    Mahdavi, Mehrdad
    Madduri, Kamesh
    Kandemir, Mahmut T.
    Dokholyan, Nikolay, V
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (04): : 1049 - 1060
  • [43] PacketShader: A GPU-Accelerated Software Router
    Han, Sangjin
    Jang, Keon
    Park, KyoungSoo
    Moon, Sue
    ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2010, 40 (04) : 195 - 206
  • [44] GPU-Accelerated Decoding of Integer Lists
    Mallia, Antonio
    Siedlaczek, Michal
    Suel, Torsten
    Zahran, Mohamed
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2193 - 2196
  • [45] GPU-accelerated connectome discovery at scale
    Sreenivasan, Varsha
    Kumar, Sawan
    Pestilli, Franco
    Talukdar, Partha
    Sridharan, Devarajan
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (05): : 298 - +
  • [46] Consistently GPU-Accelerated Graph Visualization
    Panagiotidis, Alexandros
    Reina, Guido
    Burch, Michael
    Pfannkuch, Tilo
    Ertl, Thomas
    8TH INTERNATIONAL SYMPOSIUM ON VISUAL INFORMATION COMMUNICATION AND INTERACTION (VINCI 2015), 2015, : 35 - 41
  • [47] GPU-Accelerated Algorithm for Polygon Reconstruction
    Ji, Ruian
    Niu, Zhirui
    Chen, Lan
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [48] GPU-accelerated computation of electron transfer
    Hoefinger, Siegfried
    Acocella, Angela
    Pop, Sergiu C.
    Narumi, Tetsu
    Yasuoka, Kenji
    Beu, Titus
    Zerbetto, Francesco
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2012, 33 (29) : 2351 - 2356
  • [49] GPU-accelerated molecular mechanics computations
    Anthopoulos, Athanasios
    Grimstead, Ian
    Brancale, Andrea
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2013, 34 (26) : 2249 - 2260
  • [50] GPU-accelerated and pipelined methylation calling
    Feng, Yilin
    Akbulut, Gulsum Gudukbay
    Tang, Xulong
    Gunasekaran, Jashwant Raj
    Rahman, Amatur
    Medvedev, Paul
    Kandemir, Mahmut
    BIOINFORMATICS ADVANCES, 2022, 2 (01):