On Finite Noncommutative Grobner Bases

被引:0
|
作者
Diop, Yatma [1 ]
Sow, Djiby [1 ]
机构
[1] Cheikh Anta Diop Univ Dakar, Dept Math & Comp Sci, Dakar, Senegal
关键词
natural maps; lexicographic extension; minimal generators; commutators;
D O I
10.1142/S1005386720000310
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that in the noncommutative polynomial ring in serveral variables Buchberger's algorithm does not always terminate. Thus, it is important to characterize noncommutative ideals that admit a finite Grobner basis. In this context, Eisenbud, Peeva and Sturmfels defined a map gamma from the noncommutative polynomial ring k < X-1, ..., X-n > to the commutative one k[x(1), ..., x(n)] and proved that any ideal J of k < X-1, ..., X-n >, written as J = gamma(-1)(I) for some ideal I of k[x(1), ..., x(n)], amits a finite Grobner basis with respect to a special monomial ordering on k < X-1, ..., X-n >. In this work, we approach the opposite problem. We prove that under some conditions, any ideal J of k < X-1, ..., X-n > admitting a finite Grobner basis can be written as J = gamma(-1)(I) for some ideal I of k[x(1), ..., x(n)].
引用
收藏
页码:381 / 388
页数:8
相关论文
共 50 条
  • [21] Enumeration of Finite Monomial Orderings and Combinatorics of Universal Grobner Bases
    Vasiliev, N. N.
    Pavlov, D. A.
    PROGRAMMING AND COMPUTER SOFTWARE, 2009, 35 (02) : 79 - 89
  • [22] On the use of Grobner bases for computing the structure of finite abelian groups
    Borges-Quintana, M
    Borges-Trenard, MA
    Martínez-Moro, E
    COMPUTER ALGEBRA IN SCIENFIFIC COMPUTING, PROCEEDINGS, 2005, 3718 : 52 - 64
  • [23] Computing Grobner bases for vanishing ideals of finite sets of points
    Farr, JB
    Gao, SH
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2006, 3857 : 118 - 127
  • [24] Grobner bases for finite-temperature quantum computing and their complexity
    Crompton, P. R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (11)
  • [25] Finite Grobner bases in infinite dimensional polynomial rings and applications
    Hillar, Christopher J.
    Sullivant, Seth
    ADVANCES IN MATHEMATICS, 2012, 229 (01) : 1 - 25
  • [26] Grobner bases and involutive bases
    Astrelin, AV
    Golubitsky, OD
    Pankratiev, EV
    ALGEBRA, 2000, : 49 - 55
  • [27] Rewriting as a Special Case of Noncommutative Grobner Bases Theory for the Affine Weyl Group ((A)over tilden)
    Cevik, A. Sinan
    Oezel, Cenap
    Karpuz, Eylem G.
    RING AND MODULE THEORY, 2010, : 73 - +
  • [28] Counting and Grobner bases
    Kalorkoti, K
    JOURNAL OF SYMBOLIC COMPUTATION, 2001, 31 (03) : 307 - 313
  • [29] Equivariant Grobner bases
    Hillar, Christopher J.
    Krone, Robert
    Leykin, Anton
    50TH ANNIVERSARY OF GROEBNER BASES, 2018, 77 : 129 - 154
  • [30] Boolean Grobner bases
    Sato, Yosuke
    Inoue, Shutaro
    Suzuki, Akira
    Nabeshima, Katsusuke
    Sakai, Ko
    JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (05) : 622 - 632