On Finite Noncommutative Grobner Bases

被引:0
|
作者
Diop, Yatma [1 ]
Sow, Djiby [1 ]
机构
[1] Cheikh Anta Diop Univ Dakar, Dept Math & Comp Sci, Dakar, Senegal
关键词
natural maps; lexicographic extension; minimal generators; commutators;
D O I
10.1142/S1005386720000310
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that in the noncommutative polynomial ring in serveral variables Buchberger's algorithm does not always terminate. Thus, it is important to characterize noncommutative ideals that admit a finite Grobner basis. In this context, Eisenbud, Peeva and Sturmfels defined a map gamma from the noncommutative polynomial ring k < X-1, ..., X-n > to the commutative one k[x(1), ..., x(n)] and proved that any ideal J of k < X-1, ..., X-n >, written as J = gamma(-1)(I) for some ideal I of k[x(1), ..., x(n)], amits a finite Grobner basis with respect to a special monomial ordering on k < X-1, ..., X-n >. In this work, we approach the opposite problem. We prove that under some conditions, any ideal J of k < X-1, ..., X-n > admitting a finite Grobner basis can be written as J = gamma(-1)(I) for some ideal I of k[x(1), ..., x(n)].
引用
收藏
页码:381 / 388
页数:8
相关论文
共 50 条
  • [1] Modular Techniques for Noncommutative Grobner Bases
    Decker, Wolfram
    Eder, Christian
    Levandovskyy, Viktor
    Tiwari, Sharwan K.
    MATHEMATICS IN COMPUTER SCIENCE, 2020, 14 (01) : 19 - 33
  • [2] Noncommutative Grobner bases, and projective resolutions
    Green, EL
    COMPUTATIONAL METHODS FOR REPRESENTATIONS OF GROUPS AND ALGEBRAS, 1999, 173 : 29 - 60
  • [3] Noncommutative Grobner bases for the commutator ideal
    Hermiller, S
    McCammond, J
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2006, 16 (01) : 187 - 202
  • [4] On Grobner bases of noncommutative power series
    Gerritzen, L
    Holtkamp, R
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1998, 9 (04): : 503 - 519
  • [5] NONCOMMUTATIVE GROBNER BASES OVER RINGS
    Bouesso, Andre Saint Eudes Mialebama
    Sow, Djiby
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (02) : 541 - 557
  • [6] AN INTRODUCTION TO COMMUTATIVE AND NONCOMMUTATIVE GROBNER BASES
    MORA, T
    THEORETICAL COMPUTER SCIENCE, 1994, 134 (01) : 131 - 173
  • [7] Opal: A system for computing noncommutative Grobner bases
    Green, EL
    Heath, LS
    Keller, BJ
    REWRITING TECHNIQUES AND APPLICATIONS, 1997, 1232 : 331 - 334
  • [8] NONCOMMUTATIVE GROBNER BASES IN ALGEBRAS OF SOLVABLE TYPE
    KANDRIRODY, A
    WEISPFENNING, V
    JOURNAL OF SYMBOLIC COMPUTATION, 1990, 9 (01) : 1 - 26
  • [9] Finite lattices and Grobner bases
    Herzog, Juergen
    Hibi, Takayuki
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (16) : 1969 - 1973
  • [10] Noncommutative Grobner bases and filtered-graded transfer
    Li, HS
    NONCOMMUNICATIVE GROBNER BASES AND FILTERED-GRADED TRANSFER, 2002, 1795 : 1 - +