Constrained regression model selection

被引:0
|
作者
Li, Lexin [1 ]
Tsai, Chih-Ling [2 ]
机构
[1] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[2] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA
关键词
model selection; parameter constraint; single-index model;
D O I
10.1016/j.jspi.2008.02.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose two improved versions of the Akaike information criterion, AIC(C) and AIC(C)*, for the constrained linear and sin le-index models, respectively. These enhanced versions have corresponding unconstrained selection criteria as their special cases. Our Monte Carlo simulations demonstrate that AIC(C) and AIC(C)* are superior to the Akaike information criterion. Additionally, we illustrate the use of AIC(C)* in an empirical example and generalize AIC(C)* to the constrained partially linear model. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:3939 / 3949
页数:11
相关论文
共 50 条