Sparse data-dependent kernel principal component analysis based on least squares support vector machine for feature extraction and recognition

被引:11
|
作者
Li, Jun-Bao [1 ]
Gao, Huijun [2 ]
机构
[1] Harbin Inst Technol, Dept Automat Test & Control, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Dept Control Sci & Engn, Harbin 150001, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2012年 / 21卷 / 08期
基金
美国国家科学基金会;
关键词
Kernel method; Kernel principal component analysis; Sparse learning; Data-dependent kernel function; Feature extraction; Computation efficiency;
D O I
10.1007/s00521-011-0600-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel learning is widely used in many areas, and many methods are developed. As a famous kernel learning method, kernel principal component analysis (KPCA) endures two problems in the practical applications. One is that all training samples need to be stored for the computing the kernel matrix during kernel learning. Second is that the kernel and its parameter have the heavy influence on the performance of kernel learning. In order to solve the above problem, we present a novel kernel learning namely sparse data-dependent kernel principal component analysis through reducing the training samples with sparse learning-based least squares support vector machine and adaptive self-optimizing kernel structure according to the input training samples. Experimental results on UCI datasets, ORL and YALE face databases, and Wisconsin Breast Cancer database show that it is feasible to improve KPCA on saving consuming space and optimizing kernel structure.
引用
收藏
页码:1971 / 1980
页数:10
相关论文
共 50 条
  • [21] Integrating kernel principal component analysis with least squares support vector machines for time series forecasting problems
    Information Engineering School, University of Science and Technology Beijing, Beijing 100083, China
    Beijing Keji Daxue Xuebao, 2006, 3 (303-306):
  • [22] Landslide prediction based on improved principal component analysis and mixed kernel function least squares support vector regression model
    Li-min Li
    Shao-kang Cheng
    Zong-zhou Wen
    Journal of Mountain Science, 2021, 18 : 2130 - 2142
  • [23] Landslide prediction based on improved principal component analysis and mixed kernel function least squares support vector regression model
    LI Li-min
    CHENG Shao-kang
    WEN Zong-zhou
    JournalofMountainScience, 2021, 18 (08) : 2130 - 2142
  • [24] Landslide prediction based on improved principal component analysis and mixed kernel function least squares support vector regression model
    Li Li-min
    Cheng Shao-kang
    Wen Zong-zhou
    JOURNAL OF MOUNTAIN SCIENCE, 2021, 18 (08) : 2130 - 2142
  • [25] Sparse Lq-norm least squares support vector machine with feature selection
    Shao, Yuan-Hai
    Li, Chun-Na
    Liu, Ming-Zeng
    Wang, Zhen
    Deng, Nai-Yang
    PATTERN RECOGNITION, 2018, 78 : 167 - 181
  • [26] Indefinite kernels in least squares support vector machines and principal component analysis
    Huang, Xiaolin
    Maier, Andreas
    Hornegger, Joachim
    Suykens, Johan A. K.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2017, 43 (01) : 162 - 172
  • [27] Data-dependent and Scale-Invariant Kernel for Support Vector Machine Classification
    Malgi, Vinayaka Vivekananda
    Arya, Sunil
    Rasool, Zafaryab
    Tay, David
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT I, 2023, 13935 : 171 - 182
  • [28] Face Recognition Based on Principal Component Analysis and Support Vector Machine Algorithms
    Zhang, Yanbang
    Zhang, Fen
    Guo, Lei
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 7452 - 7456
  • [29] Fault detection based on block kernel principal component analysis and support vector machine
    Li J.-B.
    Han B.
    Feng S.-B.
    Zhang J.-D.
    Li Y.
    Zhong K.
    Han M.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2020, 37 (04): : 847 - 854
  • [30] Electrocardiogram beat classification based on kernel principal component analysis and support vector machine
    Liu, Tong
    Si, Yu-Juan
    Zang, Mu-Jun
    Wang, Di
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2015, 23 : 745 - 752