Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review

被引:989
|
作者
Kok, Y. [1 ]
Tan, X. P. [1 ]
Wang, P. [3 ]
Nai, M. L. S. [3 ]
Loh, N. H. [2 ]
Liu, E. [1 ,2 ]
Tor, S. B. [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore Ctr Printing 3D, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[3] Singapore Inst Mfg Technol, 73 Nanyang Dr, Singapore 637662, Singapore
基金
新加坡国家研究基金会;
关键词
Additive manufacturing; Metals; Anisotropy; Heterogeneity; Microstructure; Properties; BEAM-MELTED TI-6AL-4V; CR-MO ALLOY; FUNCTIONALLY GRADED MATERIALS; LASER POWDER DEPOSITION; FATIGUE-CRACK GROWTH; INCONEL; 718; CRYSTALLOGRAPHIC TEXTURE; FRACTURE-TOUGHNESS; TENSILE PROPERTIES; GRAIN-STRUCTURE;
D O I
10.1016/j.matdes.2017.11.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metal additive manufacturing (AM) has developed rapidly over the last decade to become a disruptive technology capable of revolutionizing the way that products from various industrial sectors such as biomedical, aerospace, automotive, marine and offshore are designed. Early adopters of the technology like the biomedical and aerospace industries have shown that the better-designed components offer substantial performance improvements over current designs. However, in-depth and comprehensive views on the microstructure and mechanical properties of additively manufactured metals and alloys are less reported. To realize the full design potential that metal AM can offer, especially for load-bearing structural components, it is imperative to provide a thorough understanding on the anisotropic and heterogeneous microstructure and mechanical properties that often occur within metal AM parts. This paper outlines a broad range of metal AM technologies and reviews literatures on the anisotropy and heterogeneity of microstructure and mechanical properties for metal AM parts. It can be highlighted that the contributing factors to the anisotropy and heterogeneity within metal AM parts were either their unique microstructural features or manufacturing deficiencies. Concluding remarks on the state-of-the-art research regarding this topic and the possible solutions to overcome the anisotropy and heterogeneity of metal AM parts are provided. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:565 / 586
页数:22
相关论文
共 50 条
  • [21] Study on anisotropy of microstructure and mechanical properties of AZ31 magnesium alloy fabricated by wire arc additive manufacturing
    Dong Ma
    Chun-jie Xu
    Jun Tian
    Shang Sui
    Can Guo
    Xiang-quan Wu
    Zhong-ming Zhang
    China Foundry, 2023, 20 : 280 - 288
  • [22] Study on anisotropy of microstructure and mechanical properties of AZ31 magnesium alloy fabricated by wire arc additive manufacturing
    Dong Ma
    Chun-jie Xu
    Jun Tian
    Shang Sui
    Can Guo
    Xiang-quan Wu
    Zhong-ming Zhang
    China Foundry, 2023, (04) : 280 - 288
  • [23] Study on anisotropy of microstructure and mechanical properties of AZ31 magnesium alloy fabricated by wire arc additive manufacturing
    Dong Ma
    Chunjie Xu
    Jun Tian
    Shang Sui
    Can Guo
    Xiangquan Wu
    Zhongming Zhang
    ChinaFoundry, 2023, 20 (04) : 280 - 288
  • [24] Machine learning prediction of mechanical properties in metal additive manufacturing
    Akbari, Parand
    Zamani, Masoud
    Mostafaei, Amir
    ADDITIVE MANUFACTURING, 2024, 91
  • [25] The microstructure and mechanical properties of deposited-IN625 by laser additive manufacturing
    Qin, Lanlan
    Chen, Changjun
    Zhang, Min
    Yan, Kai
    Cheng, Guangping
    Jing, Hemin
    Wang, Xiaonan
    RAPID PROTOTYPING JOURNAL, 2017, 23 (06) : 1119 - 1129
  • [26] Power Ultrasonic Additive Manufacturing: Process Parameters, Microstructure, and Mechanical Properties
    Gujba, Abdullahi K.
    Medraj, Mamoun
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2020, 2020
  • [27] Anisotropy of the Mechanical Properties of the Aluminum Bronze Obtained by the Electron Beam Additive Manufacturing
    Khoroshko, E. S.
    Filippov, A., V
    Shamarin, N. N.
    Tarasov, S. Yu
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY, 2020, 2310
  • [28] Metal Additive Manufacturing: A Review
    Frazier, William E.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2014, 23 (06) : 1917 - 1928
  • [29] Metal Additive Manufacturing: A Review
    William E. Frazier
    Journal of Materials Engineering and Performance, 2014, 23 : 1917 - 1928
  • [30] Additive manufacturing of W?Fe composites using laser metal deposition: Microstructure, phase transformation, and mechanical properties
    Chen, Hui
    Ye, Lei
    Han, Yong
    Chen, Chao
    Fan, Jinglian
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 811