SHADOWING PROPERTY OF RANDOM LINEAR COCYCLES

被引:0
|
作者
Fakhari, Abbas [1 ]
Golmakani, Ali [2 ]
机构
[1] Shahid Beheshti Univ, Dept Math, Gc Tehran 19839, Iran
[2] Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, Brazil
来源
关键词
Random hyperbolic cocycle; Lipschitz shadowing; Non-zero Lyapunov exponents; ORBIT-TRACING-PROPERTY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this brief note, it is shown that the random hyperbolicity of a random linear cocycle is equivalent to having the Lipschitz shadowing property.
引用
收藏
页码:190 / 196
页数:7
相关论文
共 50 条
  • [21] Recurrence and the shadowing property
    Chu, CK
    Koo, KS
    TOPOLOGY AND ITS APPLICATIONS, 1996, 71 (03) : 217 - 225
  • [22] On Periodic Shadowing Property
    Darabi, Ali
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2019, 14 (01): : 63 - 72
  • [23] The d-Shadowing Property and Average Shadowing Property for Iterated Function Systems
    Jiang, Jie
    Wang, Lidong
    Zhao, Yingcui
    COMPLEXITY, 2020, 2020
  • [24] Minimal cocycles with the scaling property and substitutions
    Dumont, JM
    Kamae, T
    Takahashi, S
    ISRAEL JOURNAL OF MATHEMATICS, 1996, 95 : 393 - 410
  • [25] ON REPRODUCING PROPERTY AND 2-COCYCLES
    Sababe, Saeed Hashemi
    Ebadian, Ali
    Najafzadeh, Shahram
    TAMKANG JOURNAL OF MATHEMATICS, 2018, 49 (02): : 143 - 153
  • [26] Mixing Property and Ergodicity of Linear Random Processes
    Fryz, Mykhailo
    2009 IEEE INTERNATIONAL WORKSHOP ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS, 2009, : 343 - 346
  • [27] On the shadowing property of functional equations
    Jang, Sun Young
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (03) : 400 - 408
  • [28] On the average-shadowing property
    Zhang, Y.
    Beijing Daxue Xuebao Ziran Kexue Ban/Acta Scientiarum uaturalium Universitatis Pekinensis, 2001, 37 (05): : 648 - 651
  • [29] Random ergodic theorems and real cocycles
    Lemanczyk, M
    Lesigne, E
    Parreau, F
    Volny, D
    Wierdl, M
    ISRAEL JOURNAL OF MATHEMATICS, 2002, 130 (1) : 285 - 321
  • [30] Mixed Random-Quasiperiodic Cocycles
    Cai, Ao
    Duarte, Pedro
    Klein, Silvius
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (04): : 1469 - 1497